Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
The object is not available for adoption  

IC 2553


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Planetary nebula distances re-examined: an improved statistical scale
The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.

The Physical Parameters, Excitation, and Chemistry of the Rim, Jets, and Knots of the Planetary Nebula NGC 7009
We present long-slit optical spectra along the major axis of theplanetary nebula NGC 7009. These data allow us to discuss the physical,excitation, and chemical properties of all the morphological componentsof the nebula, including its remarkable systems of knots and jets. Themain results of this analysis are the following: (1) the electrontemperature throughout the nebula is remarkably constant,Te[OIII]=10,200 K; (2) the bright inner rim and inner pair ofknots have similar densities of Ne~6000 cm-3,whereas a much lower density of Ne~1500 cm-3 isderived for the outer knots as well as for the jets; (3) all the regions(rim, inner knots, jets, and outer knots) are mainly radiativelyexcited; and (4) there are no clear abundance changes across the nebulafor He, O, Ne, or S. There is marginal evidence for an overabundance ofnitrogen in the outer knots (ansae), but the inner ones (caps) and therim have similar N/H values that are at variance with previous results.Our data are compared with the predictions of theoretical models, fromwhich we conclude that the knots at the head of the jets are not matteraccumulated during the jet expansion through the circumstellar medium;nor can their origin be explained by the proposed hydrodynamic or MHDinteracting wind models for the formation of jets/ansae, since thedensities, as well as the main excitation mechanisms of the knots,disagree with model predictions.Based on observations obtained at the 2.5 m Isaac Newton Telescope (INT)of the European Northern Observatory and with the NASA/ESA Hubble SpaceTelescope, obtained at the Space Telescope Science Institute, which isoperated by AURA for NASA under contract NAS5-26555.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

Angular dimensions of planetary nebulae
We have measured angular dimensions of 312 planetary nebulae from theirimages obtained in Hα (or Hα + [NII]). We have appliedthree methods of measurements: direct measurements at the 10% level ofthe peak surface brightness, Gaussian deconvolution and second-momentdeconvolution. The results from the three methods are compared andanalysed. We propose a simple deconvolution of the 10% levelmeasurements which significantly improves the reliability of thesemeasurements for compact and partially resolved nebulae. Gaussiandeconvolution gives consistent but somewhat underestimated diameterscompared to the 10% measurements. Second-moment deconvolution givesresults in poor agreement with those from the other two methods,especially for poorly resolved nebulae. From the results of measurementsand using the conclusions of our analysis we derive the final nebulardiameters which should be free from systematic differences between small(partially resolved) and extended (well resolved) objects in our sample.Table 1 is only available in electronic form athttp://www.edpsciences.org

Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties
We present a comprehensive observational study of haloes aroundplanetary nebulae (PNe). Deep Hα+[NII] and/or [OIII] narrow-bandimages have been obtained for 35 PNe, and faint extended haloes havebeen newly discovered in the following 10 objects: Cn 1-5, IC 2165, IC2553, NGC 2792, NGC 2867, NGC 3918, NGC 5979, NGC 6578, PB 4, andpossibly IC 1747. New deep images have also been obtained of other knownor suspected haloes, including the huge extended emission around NGC3242 and Sh 2-200. In addition, the literature was searched, andtogether with the new observations an improved data base containing some50 PN haloes has been compiled.The halo sample is illustrated in an image atlas contained in thispaper, and the original images are made available for use by thescientific community at http://www.ing.iac.es/~rcorradi/HALOES/.The haloes have been classified following the predictions of modernradiation-hydrodynamical simulations that describe the formation andevolution of ionized multiple shells and haloes around PNe. According tothe models, the observed haloes have been divided into the followinggroups: (i) circular or slightly elliptical asymptotic giant branch(AGB) haloes, which contain the signature of the last thermal pulse onthe AGB; (ii) highly asymmetrical AGB haloes; (iii) candidaterecombination haloes, i.e. limb-brightened extended shells that areexpected to be produced by recombination during the late post-AGBevolution, when the luminosity of the central star drops rapidly by asignificant factor; (iv) uncertain cases which deserve further study fora reliable classification; (v) non-detections, i.e. PNe in which no halois found to a level of <~10-3 the peak surface brightnessof the inner nebulae.We discuss the properties of the haloes: detection rate, morphology,location of the central stars in the Hertzsprung-Russell diagram, sizes,surface brightness profiles, and kinematical ages. Among the mostnotable results, we find that, as predicted by models, ionized AGBhaloes are a quite common phenomenon in PNe, having been found in 60 percent of elliptical PNe for which adequately deep images exist. Another10 per cent show possible recombination haloes. In addition, using thekinematical ages of the haloes and inner nebulae, we conclude that mostof the PNe with observed AGB haloes have left the AGB far from a thermalpulse, at a phase when hydrogen burning is the dominant energy source.We find no significant differences between the AGB haloes ofhydrogen-poor and hydrogen-rich central stars.

High-velocity regions in planetary nebulae
The internal velocity fields of planetary nebulae are studied with aresolution of 5 km s-1. We analyse deep echelle spectra fromthree nebulae in the Galactic bulge, the Sagittarius Dwarf and the SmallMagellanic Cloud (SMC). No effects of metallicity are seen, exceptpossibly a slower onset of the fast wind from the central star. Robustevidence is found for the existence of a high-velocity shock at theinner edges of the nebulae. Such a shock is predicted in hydrodynamicalmodels but had not previously been observed. The shock gas isaccelerated by the fast wind from the central star. A similar shock atthe outer edges traces the expansion of the ionized shell into theambient asymptotic giant branch (AGB) wind. Evidence for localizedregions of high velocity is also found from lines of intermediateexcitation, for two of the nebulae. We explore several possibleinterpretations: (i) an embedded shock at intermediate radii, aspredicted by hydrodynamic models at the position of the outer edge ofthe swept-up inner shell; (ii) deviations from spherical symmetry, wherein some directions the intermediate-excitation lines extend into theregion of the outer shock; (iii) an intermediate swept-up shell, as seenin some Galactic planetary nebulae. The remaining nebula, with alow-mass Wolf-Rayet central star ([WC] star), shows strong turbulence.This may trace a superposition of many embedded shock-lets. We suggest arelation to the time-variable [WC] wind, giving a planetary nebulasubjected to a multitude of sound waves.

Low-Ionization Structures in Planetary Nebulae: Confronting Models with Observations
Around 50 planetary nebulae (PNs) are presently known to possess``small-scale'' low-ionization structures (LISs) located inside oroutside their main nebular bodies. We consider here the different kindsof LISs (jets, jetlike systems, symmetrical and nonsymmetrical knots)and present a detailed comparison of the existing model predictions withthe observational morphological and kinematical properties. We find thatnebulae with LISs appear indistinctly spread among all morphologicalclasses of PNs, indicating that the processes leading to the formationof LISs are not necessarily related to those responsible for theasphericity of the large-scale morphological components of PNs. We showthat both the observed velocities and locations of most nonsymmetricalsystems of LISs can be reasonably well reproduced assuming either fossilcondensations originated in the asymptotic giant branch (AGB) wind or insitu instabilities. The jet models proposed to date (hydrodynamical andmagnetohydrodynamical interacting winds or accretion disk collimatedwinds) appear unable to account simultaneously for several keycharacteristics of the observed high-velocity jets, such as theirkinematical ages and the angle between the jet and the symmetry axes ofthe nebulae. The linear increase in velocity observed in several jetsfavors magnetohydrodynamical confinement compared to pure hydrodynamicalinteracting wind models. On the other hand, we find that the formationof jetlike systems characterized by relatively low expansion velocities(similar to those of the main shells of PNs) cannot be explained by anyof the existing models. Finally, the knots that appear in symmetricaland opposite pairs of low velocity could be understood as the survivalof fossil (symmetrical) condensations formed during the AGB phase or asstructures that have experienced substantial slowing down by the ambientmedium.

Knots in the Outer Shells of the Planetary Nebulae IC 2553 and NGC 5882
We present images and high-resolution spectra of the planetary nebulaeIC 2553 and NGC 5882. Spatiokinematic modeling of the nebulae shows thatthey are composed of a markedly elongated inner shell and of a lessaspherical outer shell expanding at a considerably higher velocity thanthe inner one. Embedded in the outer shells of both nebulae are foundseveral low-ionization knots. In IC 2553, the knots show apoint-symmetric distribution with respect to the central star: onepossible explanation for their formation is that they are the survivorsof preexisting point-symmetric condensations in the asymptotic giantbranch wind, a fact that would imply a quite peculiar mass-loss geometryfrom the giant progenitor. In the case of NGC 5882, the lack of symmetryin the distribution of the observed low-ionization structures makes itpossible that they are the result of in situ instabilities. Based onobservations obtained at the 3.5 m New Technology Telescope (NTT) of theEuropean Southern Observatory and with the NASA/ESA Hubble SpaceTelescope, obtained at the Space Telescope Science Institute, which isoperated by AURA for NASA under contract NAS5-26555.

Jets and Jet-Like Structures of Low-Ionization in Planetary Nebulae
In this contribution we discuss new results of a program aimed atstudying the physical properties, origin and evolution of``low-ionization, small-scale structures in PNe''. Within this projectwe classify and discuss the properties of a sample of more than 50 PNe,collected from the literature, in the light of their possible formationmechanisms. In addition, we obtained images and spectra for 10 of thesePNe, finding low-ionization structures with very different propertiesrelative to each other, in terms of expansion velocities, shapes, sizesand locations relative to the main nebular components. Several physicalprocesses have to be invoked in order to account for the formation andevolution of jets and jet-like structures observed. We present here someresults which are illustrative of our work--on IC 4593, NGC 3918, NGC6337--comparing the different low-ionization structures in these PNe andillustrating some of the questions that we try to address. The mostinteresting result we obtained is that the collimated LIS present alinear increase in the expansion velocity from inner to outer regions.This is an important constraint on the models and is, in fact, one ofthe predictions of the interacting-stellar-wind models for the formationof jets, if stellar magnetic fields are considered.

Gas Dynamics in Planetary Nebulae: From Macro-structures to FLIERs
Purpose of this paper is to clarify how Planetary Nebulae (PNe) are veryinteresting laboratories to study cosmic gas dynamics. I first recallthe history of PNe which are generated from low and intermediate massstars through successive mass loss processes starting in the Reg Giantphase of evolution and continuing also after the termination of thepulsed AGB phase, where most of the nebular mass is believed to beejected. The correponding stellar winds are the ingredients of thenebula. Their initial properties and subsequent mutual interactions,under the action of the evolving stellar radiation field, areresponsible for the properties of the nebula. The observed structures ofPNe are considered in detail. Larger scale macroscopic structures (MACS)are examined separately from quite smaller scale microscopic structures(MICS). The formation of MACS, at least in cases of round to moderatelyelliptical PNe, is shown to be reasonably well understood in terms ofexisting hydrodynamical models. Considering the kinematical behaviour,MICS can be separated into FLIERs (Fast Low Ionization Emitting Regions)and SLOWERs (slowly moving). Attention is focussed on FLIERs and on theproposed mechanisms to interpret them. Recent observations with theHubble Space Telescope have provided us with a wealth of detailed(subarcsec) information on the nebular structures. The inner structureof FLIERs is here illustrated to consist of substructures of variousshapes with an high degree of individually from object to object, alsowithin the same PN. These new data call for deeper thoretical efforts tosolve the problems of cosmic gas dynamics, posed by their observedproperties. An ample account is given of the most relevant originalworks, in an effort to allow the non specialist reader to quickly becomeacquainted with the status of art in the various aspects of the subject.

The dust content of planetary nebulae: a reappraisal
We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Electron densities in planetary nebulae, and the unusual characteristics of the [S BT II] emission zone} ] densities in planetary nebulae
We investigate the radial variation of electron densities in planetarynebulae, using values of ne deriving from the [S ii]<~mbda6717/<~mbda6730 line ratio. As a result, we are able to showthat there is a sharp discontinuity in densities of order 1.4 dex closeto nebular radii R=0.1 pc. It is proposed, as a consequence, that mostnebulae contain two primary [S ii] emission zones, with densitiesdiffering by a factor ~ 10(2) . The intensity of emission from thedenser component increases by an order of magnitude where nebulae passfrom radiation to density-bound expansion regimes, resulting in acorresponding discontinuous jump in [S ii]/Hβ line ratios. Theorigins of these changes are not entirely clear, although one mechanismis investigated whereby the superwind outflows shock interact withexterior AGB envelopes. Finally, the derived trends in ne(R)are used to determine distances for a further 262 nebulae. The resultingdistance scale appears to be comparable to that of Daub (1982) and Cahnet al. (1992).

The kinematics of 867 galactic planetary nebulae
We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Orientation of planetary nebulae within the Galaxy
Narrow-band CCD images of 209 axially symmetrical planetary nebulae(PNe) have been examined in order to determine the orientation of theiraxes within the disc of the Galaxy. The nebulae have been divided intothe bipolar (B) and elliptical (E) PNe morphological types, according tothe scheme of Corradi & Schwarz. In both classes, contrary to theresults of Melnick & Harwit and Phillips we do not find any strongevidence for non-random orientations of the nebulae in the Galaxy.Compared with previous work in this field, the present study takesadvantage of the use of larger and morphologically more homogeneoussamples and offers a more rigorous statistical analysis.

A self-consistent determination of distances, physical parameters, and chemical composition for a large sample of galactic planetary nebulae: chemical composition
The relative abundances of He, C, N, O, Ne, Mg, Si, S, and Ar arepresented for, respectively, 185, 65, 212, 221, 180, 13, 41, 197, and205 Galactic planetary nebulae. The observed stages of ionization weretaken into account using the relations between the relative abundancesof different ions derived from a grid of photoionization models for thenebular emission. The chemical compositions of all the planetary nebulaewere determined using the same method and the same atomic data, so thatthe results have a high degree of uniformity; this is the first timethis has been done for such a large sample of Galactic planetary nebulae(221 objects).

Inhomogeneous planetary nebulae: carbon and oxygen abundances
We reconsider the problem of the difference between the abundances ofcarbon and oxygen in galactic planetary nebulae (PN) derived from theintensities of the recombination and collisionally excited lines. Thisdiscrepancy can be explained by an inhomogeneity of the PNe and anoverestimation of the weak line intensities. The formulae forcalculation of the nebular line intensities in presence of bothtemperature and density fluctuations are given. The intensities of theforbidden [OIII] lines, the CII, CIII and CIV recombination lines andthe CIII]lambda 1909 UV intercombination doublet for different values ofthe mean electron temperature T_0 in PNe and the rms temperaturevariation t^2, are calculated. Results of these calculations are used tofind the values of T_0 and t^2 which allow to provide the best fit ofthe observed and calculated line intensities (taking into account theobservational errors). In most cases, the obtained values of T_0 appearto be significantly smaller than ordinarily used for the abundancedeterminations T_e([OIII]), while t^2<0.16. The carbon and oxygenabundances for more than 70 PNe are calculated. For these PNe averagechemical abundances are evaluated separately for nebulae of type I, IIand III. For the first, we found C/H=6.67*10(-4) cm(-3) andO/H=5.74*10(-4) 4cm(-3) . For the second they are C/H=8.94*10(-4) cm(-3)and O/H=6.36*10(-4) cm(-3) . For the third we obtained C/H=3.94*10(-4)cm(-3) and O/H=4.79*10(-4) cm(-3) . Results of the fitting of the lineintensities for the NIII lambda 4640 and NIV] lambda 1486 lines are alsogiven.

A self-consistent determination of the distances, physical parameters, and chemical composition for a large sample of galactic planetary nebulae: The distances and parameters of central stars and the optical depths of envelopes
The distances and parameters of the central stars and the optical depthsof the envelopes in the Lyman limits of neutral hydrogen and neutralhelium were determined in a self-consistent way for 170 Galacticplanetary nebulae (PNe). The distance to each PN was so chosen that thetheoretically calculated evolutionary age of its nucleus was equal tothe dynamical age of its expanding envelope. The effective temperatureof the central star and its related parameters were determined either bythe generalized energy-balance method or, where appropriate, byZanstra's method. The derived distance estimates lend support to a`long' distance scale for PNe and are generally in agreement withcurrent individual and statistical estimates of the distances to PNeavailable in the literature. The mean distance to the bulge PNe is 7.9+/- 0.3 kpc, in agreement with the distance to the Galactic center. Themasses of the central stars of PNe corresponding to the deriveddistances are closely correlated with the nebular nitrogen-to-oxygenabundance ratio.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Properties That Cannot Be Explained by the Progenitors of Planetary Nebulae
I classify a large number of planetary nebulae (458) according to theprocess that caused their progenitors to blow axisymmetrical winds. Theclassification is based primarily on the morphologies of the differentplanetary nebulae, assuming that binary companions, stellar orsubstellar, are necessary in order to have axisymmetrical mass loss onthe asymptotic giant branch. I propose four evolutionary classes,according to the binary-model hypothesis: (1) Progenitors of planetarynebula that did not interact with any companion. These amount to ~10% ofall planetary nebulae. (2) Progenitors that interact with stellarcompanions that avoided a common envelope, 11^{+2}_{-3}% of all nebulae.(3) Progenitors that interact with stellar companions via a commonenvelope phase, 23^{+11}_{-5}% of all nebulae. (4) Progenitors thatinteract with substellar (i.e., planets and brown dwarfs) companions viaa common envelope phase, 56^{+5}_{-8}% of all nebulae. In order todefine and build the different classes, I start with clarifying somerelevant terms and processes related to binary evolution. I then discusskinematical and morphological properties of planetary nebulae thatappear to require the interaction of the planetary nebula progenitorsand/or their winds with companions, stellar or substellar.

Unveiling low-ionization microstructures in planetary nebulae.
(Hα+[NII])/[OIII] ratio images have been used to search forlow-ionization small-scale structures in a sample of 258 planetarynebulae. Radially symmetrical knots or jet-like structures, which areenhanced in the ratio images compared to the neighbouring regions of thenebulae, have been identified in 23 objects. Some of these features arebarely detected or invisible in the Hα+[NII] and [OIII] images.Empirical evidence, as well as some simple modelling, demonstrate thatthe selected features are characterized by having a lower ionizationthan the surrounding gas. For the above properties, most of themresemble the low-ionization microstructures discussed recently by Balicket al. (1993, 1994), and named FLIERs (Fast Low-Ionization EmissionRegions). The present work shows that the image-division technique is avery useful tool to look for ionization structures in planetary nebulaeand other HII regions. Its main advantage is that the division removesthe morphological components which are pure density enhancements, sothat the output image remains mostly sensitive to excitation andabundance variations through the nebulae.

[N II] and [O III] Mean Electron Temperatures in Planetary Nebulae
Mean electron tempertures for 106 planetary nebulae are presented, whichhave been derived using calculations of the values of electrontemperature-sensitive line ratios involving forbidden transitions amongthe 2s^2 2p^2 3P, 1D, and 1S levels of N+ and O++, based on new electronimpact rates and transition probabilities. Comparison of these resultswith values of T_e[N II] and T_e[O III] determined previously by Kalerreveal that the present electron temperatures are systematically lowerfor both ions, and that this discrepancy is correlated with the electrondensity in the nebula. It is also shown that the average differencetween T_e[N II] and T_e[O III] in a planetary nebula is somewhat smallerthan that derived by Kaler, with the present results implying that the NII and O III temperatures disagree on average by 2070 K as opposed tothe 2210 K average found by Kaler. (SECTION: Interstellar Medium andNebulae)

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A statistical distance scale for Galactic planetary nebulae
A statistical distance scale is proposed. It is based on the correlationbetween the ionized mass and the radius and the correlation between theradio continuum surface brightness temperature and the nebular radius.The proposed statistical distance scale is an average of the twodistances obtained while using the correlation. These correlations,calibrated based on the 1`32 planetary nebulae with well-determinedindividual distances by Zhang, can reproduce not only the averagedistance of a sample of Galactic Bulge planetary nebulae exactly at thedistance to the Galactic center, but also the expected Gaussiandistribution of their distances around the Galactic center. This newdistance scale is applied to 647 Galactic planetary nebulae. It isestimated that this distance scale can be accurate on average to35%-50%. Our statistical distance scale is in good agreement with theone recently proposed by Van de Steene and Zijlstra. The correlationsfound in this study can be attributed to the fact that the core mass ofthe central stars has a very sharp distribution, strongly peaked atapprox. 0.6 solar mass. We stress that the scatter seen in thestatistical distance scale is likely to be real. The scatter is causedby the fact that the core mass distribution, although narrow andstrongly peaked, has a finite width.

On an alternative statistical distance scale for planetary nebulae. Catalog with statistical distances to planetary nebulae.
We have proposed a statistical method to determine distances toplanetary nebulae. The method is based on an empirical correlationbetween the radio-continuum brightness temperature and radius. Here wepresent a catalog of distance determinations calculated using thismethod.

A catalogue HeII 4686 line intensities in Galactic planetary nebulae.
We have compiled the intensities of the HeII 4686 lines measured inGalactic planetary nebulae. We present a few observational diagramsrelated to this parameter, and discuss them with the help of theoreticaldiagrams obtained from simple model planetary nebulae surroundingevolving central stars of various masses. We determine the hydrogen andhelium Zanstra temperature for all the objects with accurate enoughdata. We argue that, for Galactic planetary nebulae as a whole, the maincause for the Zanstra discrepancy is leakage of stellar ionizing photonsfrom the nebulae.

The carbon abundance problem in planetary nebulae
We have reexamined the problem of the discrepancy between carbonabundances in planetary nebulae derived from the CII lambda(4267) andCIII) lambda(1909) line intensities. To this end, we have compiled thepublished optical and ultraviolet data allowing to compute C/O inplanetary nebulae, and constructed diagrams providing a synthetic viewof the problem. We have performed Monte-Carlo simulations to study theeffect of observational errors in the measurement of line intensities,and have found that C/O abundance ratios derived from the CIIlambda(4267) lines are strongly biased towards too large values, whichexplains a large part of the trend seen in the observational diagrams.Taking into account the observational errors, we discuss some otherexplanations which have been proposed to resolve the discrepancy, suchas temperature fluctuations. Adopting the C/O values from the CIII)lambda(1909) lines, we find that carbon-rich objects represent less thanone half of the total number of planetary nebulae. This is significantlyless than the proportions quoted in previous studies. The percentage ofcarbon-rich objects among Type I and Non Type I Galactic planetarynebulae are similar, contrary to what is found in the Magellanic Clouds.

The correlations between planetary nebula morphology and central star evolution
The morphology of 111 Galactic planetary nebulae has been studied inrelation to the evolutionary stage of their central stars. In order tolocate these stars on the log Teff - Log L/solar luminosityplane, we have calculated the Zanstra temperatures with the most up todate fluxes and magnitudes available in the literature. Distances to thenebulae were estimated with statistical methods. The different natureand evolutionary stages of central stars have been related to themorphologies of the surrounding nebulae in a statistical sense. We foundthat multiple shell nebulae contain stars that are at a differentevolutionary stage than those of single shell nebulae; we also foundthat bipolar and elliptical planetary nebulae very likely containcentral stars with a different mass distribution; furthermore, we buildan optical thickness sequence of morphological types.

Trace of planetary nebula evolution by distance-independent parameters
Using existing infrared and radio data on a sample of 432 planetarynebulae, we derived a number of distance-independent parameters forcomparison with evolutionary models of planetary nebulae. We find thatmany of the observed properties of planetary nebulae can be explained bycurrent central star evolutionary models, even if the time scales aresubject to significant change by a factor of up to an order ofmagnitude. Specifically, we find that the evolutionary tracks are wellseparated in the radio surface brightness-central star temperatureplane, therefore allowing us to determine the core mass of individualplanetary nebulae. We also obtain the luminosity and gravity of thecentral stars of individual nebulae, from their temperature and coremass, without relying on the distance assumptions. We find that ourresults of the core mass are in good agreement with those of Mendez etal. (1992) and Tylenda et al. (1991). A systematic, large discrepancy isfound between the luminosity found in this work and that found byGathier and Pottasch (1986).

The Correlations Between Planetary Nebula Morphology and Central Star Evolution
Abstract image available at:http://adsabs.harvard.edu/abs/1993A&A...276..463S

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Carina
Right ascension:10h09m20.86s
Declination:-62°36'48.4"
Apparent magnitude:13

Catalogs and designations:
Proper Names
ICIC 2553

→ Request more catalogs and designations from VizieR