Inici     Sobreviure a l'Univers    
Services
    Per que Habitar     Millors Contribuents     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 118322


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

NSCC—A New Scheme of Classification of C-Rich Stars Devised from Optical and Infrared Observations
A new classification system for carbon-rich stars is presented based onan analysis of 51 asymptotic giant branch carbon stars through the mostrelevant classifying indices available. The extension incorporated,which also represents the major advantage of this new system, is thecombination of the usual optical indices that describe the photospheresof the objects, with new infrared ones, which allow an interpretation ofthe circumstellar environment of the carbon-rich stars. This new systemis presented with the usual spectral subclasses and C2-, j-,MS-, and temperature indices, and also with the new SiC- (SiC/C.A.abundance estimation) and ?- (opacity) indices. The values for theinfrared indices were carried out through a Monte Carlo simulation ofthe radiative transfer in the circumstellar envelopes of the stars. Thefull set of indices, when applied to our sample, resulted in a moreefficient system of classification, since an examination in a widespectral range allows us to obtain a complete scenario for carbon stars.

AGB variables and the Mira period-luminosity relation
Published data for large-amplitude asymptotic giant branch variables inthe Large Magellanic Cloud (LMC) are re-analysed to establish theconstants for an infrared (K) period-luminosity relation of the formMK = ρ[logP - 2.38] + δ. A slope of ρ = -3.51+/- 0.20 and a zero-point of δ = -7.15 +/- 0.06 are found foroxygen-rich Miras (if a distance modulus of 18.39 +/- 0.05 is used forthe LMC). Assuming this slope is applicable to Galactic Miras we discussthe zero-point for these stars using the revised Hipparcos parallaxestogether with published very long baseline interferometry (VLBI)parallaxes for OH masers and Miras in globular clusters. These result ina mean zero-point of δ = -7.25 +/- 0.07 for O-rich Galactic Miras.The zero-point for Miras in the Galactic bulge is not significantlydifferent from this value.Carbon-rich stars are also discussed and provide results that areconsistent with the above numbers, but with higher uncertainties. Withinthe uncertainties there is no evidence for a significant differencebetween the period-luminosity relation zero-points for systems withdifferent metallicity.

Galactic distributions and statistics of the HD stars in the michigan spectral catalogue.
Not Available

VZ Velorum: 116 years of a Mira star
Using the Harvard College Observatory photographic plate collection andrecent CCD observations by the ASAS project we have reconstructed thelight variations of the southern pulsating red giant star VZ Velorumbetween 1890 and early 2006. Contrary to an early report on itslow-amplitude semiregular nature, we found a relatively stable Mira-likelight curve with a mean period of 318 days and amplitude up to 7magnitudes. The latest observations show evidence for a slightly shorterperiod (312 days). However, the difference does not exceed the intrinsicperiod jitter often seen in Mira type variables.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Near-infrared photometry of carbon stars
Near-infrared, JHKL, photometry of 239 Galactic C-rich variable stars ispresented and discussed. From these and published data, the stars wereclassified as Mira or non-Mira variables, and amplitudes and pulsationperiods, ranging from 222 to 948 d for the Miras, were determined formost of them. A comparison of the colour and period relations with thoseof similar stars in the Large Magellanic Cloud indicates minordifferences, which may be the consequence of sample selection effects.Apparent bolometric magnitudes were determined by combining the meanJHKL fluxes with mid-infrared photometry from IRAS and MSX. Then, usingthe Mira period luminosity relation to set the absolute magnitudes,distances were determined - to greater accuracy than has hitherto beenpossible for this type of star. Bolometric corrections to the Kmagnitude were calculated and prescriptions derived for calculatingthese from various colours. Mass-loss rates were also calculated andcompared to values in the literature.Approximately one-third of the C-rich Miras and an unknown fraction ofthe non-Miras exhibit apparently random obscuration events that arereminiscent of the phenomena exhibited by the hydrogen-deficient RCoronae Borealis stars. The underlying cause of this is unclear, but itmay be that mass loss, and consequently dust formation, is very easilytriggered from these very extended atmospheres.Based on observations made at the South African AstronomicalObservatory.E-mail: paw@saao.ac.za

Secular Evolution in Mira Variable Pulsations
Stellar evolution theory predicts that asymptotic giant branch (AGB)stars undergo a series of short thermal pulses that significantly changetheir luminosity and mass on timescales of hundreds to thousands ofyears. These pulses are confirmed observationally by the existence ofthe short-lived radioisotope technetium in the spectra of some of thesestars, but other observational consequences of thermal pulses are subtleand may only be detected over many years of observations. Secularchanges in these stars resulting from thermal pulses can be detected asmeasurable changes in period if the star is undergoing Mira pulsations.It is known that a small fraction of Mira variables exhibit largesecular period changes, and the detection of these changes among alarger sample of stars could therefore be useful in evolutionary studiesof these stars. The American Association of Variable Star Observers(AAVSO) International Database currently contains visual data for over1500 Mira variables. Light curves for these stars span nearly a centuryin some cases, making it possible to study the secular evolution of thepulsation behavior on these timescales. In this paper we present theresults of our study of period change in 547 Mira variables using datafrom the AAVSO. We use wavelet analysis to measure the period changes inindividual Mira stars over the span of available data. By making linearfits to the period versus time measurements, we determine the averagerates of period change, dlnP/dt, for each of these stars. We findnonzero dlnP/dt at the 2 σ significance level in 57 of the 547stars, at the 3 σ level in 21 stars, and at the level of 6 σor greater in eight stars. The latter eight stars have been previouslynoted in the literature, and our derived rates of period change largelyagree with published values. The largest and most statisticallysignificant dlnP/dt are consistent with the rates of period changeexpected during thermal pulses on the AGB. A number of other starsexhibit nonmonotonic period change on decades-long timescales, the causeof which is not yet known. In the majority of stars, the periodvariations are smaller than our detection threshold, meaning theavailable data are not sufficient to unambiguously measure slowevolutionary changes in the pulsation period. It is unlikely that morestars with large period changes will be found among heretoforewell-observed Mira stars in the short term, but continued monitoring ofthese and other Mira stars may reveal new and serendipitous candidatesin the future.

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

How many Hipparcos Variability-Induced Movers are genuine binaries?
Hipparcos observations of some variable stars, and especially oflong-period (e.g. Mira) variables, reveal a motion of the photocentercorrelated with the brightness variation (variability-induced mover -VIM), suggesting the presence of a binary companion. A re-analysis ofthe Hipparcos photometric and astrometric data does not confirm the VIMsolution for 62 among the 288 VIM objects (21%) in the Hipparcoscatalogue. Most of these 288 VIMs are long-period (e.g. Mira) variables(LPV). The effect of a revised chromaticity correction, which accountsfor the color variations along the light cycle, was then investigated.It is based on ``instantaneous'' V-I color indices derived fromHipparcos and Tycho-2 epoch photometry. Among the 188 LPVs flagged asVIM in the Hipparcos catalogue, 89 (47%) are not confirmed as VIM afterthis improved chromaticity correction is applied. This dramatic decreasein the number of VIM solutions is not surprising, since the chromaticitycorrection applied by the Hipparcos reduction consortia was based on afixed V-I color. Astrophysical considerations lead us to adopt a morestringent criterion for accepting a VIM solution (first-kind risk of0.27% instead of 10% as in the Hipparcos catalogue). With this moresevere criterion, only 27 LPV stars remain VIM, thus rejecting 161 ofthe 188 (86%) of the LPVs defined as VIMs in the Hipparcos catalogue.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).Table 1 is also available in electronic form at the CDS, via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1167

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

Millimetre observations of infrared carbon stars. II. Mass loss rates and expansion velocities
Dust- and gas mass loss rates and distances are determined for a sampleof about 330 infra-red carbon stars that probe a distance up to about5.5 kpc. The dependence of the dust- and gas mass loss rates, and theexpansion velocity upon galactic longitude (l) are studied. It is foundthat the expansion velocity significantly depends on l, but that theabsolute bolometric magnitude, the dust mass loss rate and thegas-to-dust ratio depend on l marginally, if at all, and the gas massloss rate does not depend on l. Beyond the solar circle, the expansionvelocity (as well as the luminosity, dust-to-gas ratio, dust mass lossrate) is lower than inside the solar circle, as expected from theoverall gradient in metallicity content of the Galaxy. Combining theaverage expansion velocity inside and beyond the solar circle with thetheoretically predicted relation between expansion velocity andgas-to-dust ratio, we find that the metallicity gradient in the solarneighbourhood is about -0.034 dex/kpc, well within the quoted range ofvalues in the literature.

Millimetre observations of infrared carbon stars. I. The data
Millimetre observations of IRAS selected red carbon stars are presented.About 260 stars have been observed with SEST and IRAM in the CO (1-0)and CO (2-1) lines and partially in HCN (1-0) and SiO (3-2). An overalldetection rate, in at least one line, of about 80% is achieved. Thesurvey represents the second largest survey for AGB stars, and thelargest ever for carbon stars. Two new detections in SiO (3-2) in carbonstars are reported. When available, the SiO/HCN and HCN/CO (1-0) lineratios are consistent with the ratios expected for carbon stars. Basedon observations collected at the European Southern Observatory, LaSilla, Chile within program ESO 60.E-0103, 62.L-0128, 64.L-0012 and66.D-0027. Also based on observations with the IRAM telescope, Granada,Spain under programs 98-97, 141-97 and 010-99. The complete Fig. 1 isonly available in electronic form at http://www.edpsciences.org. Thecomplete Table 3 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/501

Coordinates and Identifications of Harvard Variables
Coordinates and identifications are presented for 726 Harvard Variablestars and suspected variables, discovered or studied by D. Hoffleit andannounced in Harvard Bulletins 874, 884, 887, 901, and 902; plus 141others, previously known, lying in the same fields.

Polarimetry of 167 Cool Variable Stars: Data
Multicolor photoelectric polarimetry is presented for 167 stars, most ofwhich are variable stars. The observations constitute a data set thatfor some stars covers a time span of 35 yr. Complex variations are foundover time and wavelength and in both the amount of polarization and itsposition angle, providing constraints for understanding the polarizingenvironments in and around these cool stars.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

The effective temperatures of carbon-rich stars
We evaluate effective temperatures of 390 carbon-rich stars. Theinterstellar extinction on their lines of sights was determined andcircumstellar contributions derived. The intrinsic (dereddened) spectralenergy distributions (SEDs) are classified into 14 photometric groups(HCi, CVj and SCV with i=0,5 and j=1,7). The newscale of effective temperatures proposed here is calibrated on the 54angular diameters (measured on 52 stars) available at present from lunaroccultations and interferometry. The brightness distribution on stellardiscs and its influence on diameter evaluations are discussed. Theeffective temperatures directly deduced from those diameters correlatewith the classification into photometric groups, despite the large errorbars on diameters. The main parameter of our photometric classificationis thus effective temperature. Our photometric < k right >1/2 coefficients are shown to be angular diameters on arelative scale for a given photometric group, (more precisely for agiven effective temperature). The angular diameters are consistent withthe photometric data previously shown to be consistent with the trueparallaxes from HIPPARCOS observations (Knapik, et al. \cite{knapik98},Sect. 6). Provisional effective temperatures, as constrained by asuccessful comparison of dereddened SEDs from observations to modelatmosphere predictions, are in good agreement with the values directlycalculated from the observed angular diameters and with those deducedfrom five selected intrinsic color indices. These three approaches wereused to calibrate a reference angular diameter Phi 0 and theassociated coefficient CT_eff. The effective temperatureproposed for each star is the arithmetic mean of two estimates, one(``bolometric'') from a reference integrated flux F0, theother (``spectral'') from calibrated color indices which arerepresentative of SED shapes. Effective temperatures for about 390carbon stars are provided on this new homogeneous scale, together withvalues for some stars classified with oxygen-type SEDs with a total of438 SEDs (410 stars) studied. Apparent bolometric magnitudes are given.Objects with strong infrared excesses and optically thick circumstellardust shells are discussed separately. The new effective temperaturescale is shown to be compatible and (statistically) consistent with thesample of direct values from the observed angular diameters. Theeffective temperatures are confirmed to be higher than the mean colortemperatures (from 140 to 440 K). They are in good agreement with thepublished estimates from the infrared flux method forTeff>= 3170 K, while an increasing discrepancy is observedtoward lower temperatures. As an illustration of the efficiency of thephotometric classification and effective temperature scale, the C/Oratios and the Merrill-Sanford (M-S) band intensities are investigated.It is shown that the maximum value, mean value and dispersion of C/Oincrease along the photometric CV-sequence, i.e. with decreasingeffective temperature. The M-S bands of SiC2 are shown tohave a transition from ``none'' to ``strong'' at Teff =~(2800+/- 150right ) K. Simultaneously, with decreasing effectivetemperature, the mean C/O ratio increases from 1.04 to 1.36, thetransition in SiC2 strength occurring while 1.07<= C/O<= 1.18. This research has made use of the Simbad database operatedat CDS, Strasbourg, France. Table 10 is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)}or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/178

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

Infrared colours for Mira-like long-period variables found in the (Mȯ<~10-7 Msolar yr-1) Hipparcos Catalogue
Near-infrared, JHKL, photometry is presented for 193 Mira andsemi-regular variables that were observed by Hipparcos; periods,bolometric magnitudes and amplitudes are derived for 92 of them. Becauseof the way in which the Hipparcos targets were selected, this group ofstars provides a useful data base of Miras with low mass-loss rates(Mȯ<~10-7Msolaryr-1).Various period-colour relationships are discussed in detail. The colour,particularly BCK = 10.86 - 38.10 K (J - K)0 +64.16(J - K)20 - 50.72(J -K)30 + 19, K-L, at a given period is found todepend on the pulsation amplitude of the star. A comparison with modelssuggests that this is a consequence of atmospheric extension, in thesense that large-amplitude pulsators have very extended atmospheres andredder Mȯ<10-7Msolaryr-1, K-L and H-K but bluerJ-H than their lower amplitude counterparts. The stars with veryextended atmospheres also have higher values of K-[12] and hence highermass-loss rates. This finding provides further evidence for the causalconnection between pulsation and mass loss. Two sequences are identifiedin the Hp-K versus logP diagram (where Hp is the Hipparcos broad-bandmagnitude) at short periods (logP<2.35). At a given period these twogroups have, on average, the same pulsation amplitude, but differentJHKL colours and spectral types. The short-period stars in the bluersequence have similar near-infrared colours to the Miras found inglobular clusters. Long-term trends in the infrared light curves arediscussed for stars that have sufficient data.

Trend analysis of 51 carbon long-period variables.
Not Available

Dust extinction and intrinsic SEDs of carbon-rich stars. III. The Miras, CS, and SC stars
The present work is an extension of a recent study by Knapik &Bergeat (\cite{knapik97}), and Bergeat et al. (\cite{berge98b})henceforth called Papers I and II, respectively. The spectral energydistributions (SEDs) of about 440 carbon-rich stars and the interstellarextinction observed on their line of sights were analysed. The methodsoriginally developed for Semi-Regular (SR) and Irregular (L) variables(Paper I: our groups CV1 to CV6) were then extended (Paper II) to thehot carbon (HC) stars (our groups HC0 to HC5) and related objects (RCB,BaII and HdC stars). Shortly, this is a kind of a pair method making usesimultaneously of the whole SED from UV to IR. Our approach is appliedhere to the galactic cool carbon-rich variables which were notconsidered in Paper I, namely the carbon Miras and very cool non-Miras,and the CS and SC variables. The carbon Miras with infrared silicateemission are also studied. The photometric CV1 to CV6 classificationscheme of paper I is implemented, and we add here a later CV7-group anda specific SCV-group which corresponds to spectroscopic SC stars. Acontinuous S-SC-CS-C sequence is clearly supported by our results. Thecarbon stars with IR silicate emission included in our study do havecarbon-rich SEDs of the three consecutive groups HC5, CV1 and CV2. Theystand among the relatively hot carbon variables, in the 3600-3000 Krange in effective temperature. The carbon Miras are satisfactorilydescribed in this enlarged scheme. No specific extension is requiredsince non-Miras are also found in the CV7 and SCV-groups. The derivedgroup is however frequently phase-dependent in these large amplitudevariables. Additional selective extinction of circumstellar (CS) originis observed in variable amounts. The mean extinction law for theinterstellar diffuse medium as tabulated by Mathis (\cite{mathis}) isshown to be relevant. It applies to both interstellar and circumstellarextinction with a possible CS neutral extinction in addition which wouldremain undetected here. The corresponding colour excess E(B-V) is largerat minimum light or intermediate phases than what it is at maximum light(where it can amount to zero). It is associated to large IR excessesattributed to the emission from CS dust. Long-term variations onthousands of days may be interpreted in terms of varying CS dust opacityon the line of sight. The dust influence is discussed. It is shown thatscattering, if substantial on the line of sight in the observing lobe,has to be essentially wavelength-independent, i.e. due to large neutralscatterers, especially in high opacity objects like IRC +10216. Finally,with the HC0 to HC5 classification of HC stars (Paper II), we obtain afourteen groups sequence (HC0 to HC5 and then CV1 to CV7 from theearlier one to the latest one, and SCV for SC stars apart). The numberof studied stars amounts now to about 600 that is about 40 stars pergroup on the average when the oxygen-type SEDs are subtracted. Theeffective temperature calibration of this classification scheme iscurrently in preparation. This research has made use of the Simbaddatabase operated at CDS, Strasbourg, France.}\fnmsep\thanks{Partiallybased on data from the ESA HIPPARCOS astrometrysatellite}\fnmsep\thanks{Table~5 is only available in electronic form atthe CDS via anonymous ftp 130.79.128.5

The PL relation of galactic carbon LPVs. The distance modulus to LMC
We present a period-luminosity (PL) diagram of 115 galactic carbon-richlong period variables (LPVs) observed by the HIPPARCOS satellite, in theform of the (MK,log P) relation. Our plot is compared to thediagram of carbon variables observed in the Large Magellanic Cloud(LMC). Both diagrams are found very similar and three samples aredelineated: long period variables close to the PL relation of Feast etal. (1989), short period-overluminous variables and a few underluminousLPVs, respectively Samples 1, 2 and 3. The used data were deduced fromexpectations of true parallaxes (Knapik et al. 1997) which arestatistically free of the Lutz-Kelker effect. The remaining bias due tothe non-gaussian distribution of absolute magnitudes is avoided: anon-linear parametric method is applied in Sect. 4 to the analysis ofthe PL relation for Sample 1 (72 LPVs). We obtainMK=(-3.99+/-0.13)log P+(2.07+/-0.15), in good agreement withthe slope found for LMC variables by Reid et al. (1995). The LMCdistance modulus then derived is mu =18.50+/-0.17. A well-defined upperlimit (ul) for long period stars in Sample 1 is found, with similarslopes in both the Galaxy (-4.85) and LMC (-4.72). No correction formetallicity was applied to the results. This research has made use ofthe Simbad database operated at CDS, Strasbourg, France.

The carbon-rich dust sequence - Infrared spectral classification of carbon stars
We have developed a classification system for the infrared spectralemission from carbon stars using a sample of 96 bright carbon-richvariables associated with the asymptotic giant branch. In addition tothe stellar contribution, most spectra include the 11.2 micron emissionfeature from SiC and either a smooth, cool continuum from amorphouscarbon or a secondary emission feature at 9.0 microns. We haveidentified a carbon-rich dust sequence along which the amorphous carboncomponent grows while the 9.0 micron feature declines in strength. Alongthis spectral sequence, the proportion of Mira variables increases, asdoes the period of variability, the mass-loss rate, and the thickness ofthe circumstellar shell. Thus the carbon-rich dust sequence appears tobe an evolutionary sequence. One class of spectra shows a particularlystrong 9.0 micron feature, enhanced C/O ratio, and several other unusualproperties that suggest a different sequence, perhaps related to Jstars.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Mean light curves of long-period variables and discrimination between carbon- and oxygen-rich stars
Using 75 years of AAVSO data, mean light curve parameters of a sample of355 long period M, S, and C mira and semi-regular variable stars areinvestigated. We present a classification of the light curves of LPVsinto 6 distinct groups. Combining this classification with IRAS colorsmakes it possible to distinguish oxygen-rich from carbon-rich miras.Table 2 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Mass-loss variations among carbon-rich AGB variables
Near-infrared light curves are presented for 11 large-amplitude carbonvariables, covering time periods of 9 to 22yr. The light curves differgreatly among the various stars, although there is some degree ofsimilarity among those with similar mass-loss characteristics. ThreeMiras with moderately thick dust shells, R For, R Lep and R Vol, exhibitlarge-amplitude (up to DeltaJ~2mag), erratic changes on top of theirnormal pulsational variations. The similarity between their light curvesand those of R Coronae Borealis stars is noted. Evidence is presentedthat suggests that carbon-rich dust ejection occurs in a preferreddirection, possibly from the equator. In the case of R Lep at least, thepreferred direction coincides with the line of sight. Periodicvariations of the dust shell, which have previously been suggested for RFor, are not confirmed. Three Miras with very thin dust shells, V Cru,TT Cen and RV Cen, show rather little in the way of long-term trends.One of two thick-shelled sources, IZ Peg (CRL 3099), has a pulsationamplitude which has been gradually increasing over the last 16 years.The three semiregular variables, R Scl, GM CMa and IRAS 04067-0922, allshow evidence of detached shells. Two of them also have double periods:GM CMa at twice the dominant pulsation period, and R Scl atapproximately five times the dominant pulsation period.

Introducing Mira Variables
This brief summary on the observational properties of Mira-type variablestars introduces the talks given during the special Mira session at the85th Annual Meeting of the AAVSO, on the occasion of the 400thanniversary of the discovery of Mira. The articles following thisintroduction each deal with specific observational and theoreticalaspects of Mira variables, thus giving an overall picture of thisimportant and abundant class of variables.

A Study of Circumstellar Envelopes around Bright Carbon Stars. II. Molecular Abundances
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJS...87..305O&db_key=AST

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Centaurus
Ascensió Recta:13h37m36.06s
Declinació:-56°28'35.1"
Magnitud Aparent:8.176
Distancia:1000 parsecs
Moviment propi RA:-12.5
Moviment propi Dec:-5
B-T magnitude:12.205
V-T magnitude:8.509

Catàlegs i designacions:
Noms Propis
HD 1989HD 118322
TYCHO-2 2000TYC 8671-1707-1
USNO-A2.0USNO-A2 0300-18971867
HIPHIP 66466

→ Sol·licitar més catàlegs i designacions de VizieR