Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 163611


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Not Available
Not Available

Luminosity function of contact binaries based on the All Sky Automated Survey (ASAS)
The luminosity function for contact binary stars of the W UMa type isevaluated on the basis of the All Sky Automated Survey (ASAS)photometric project covering all stars south of δ=+ 28° withina magnitude range 8 < V < 13. Lack of colour indices enforced alimitation to 3374 systems with P < 0.562 d (i.e. 73 per cent of allsystems with P < 1 d) where a simplified MV(logP)calibration could be used. The spatial density relative to themain-sequence FGK stars of 0.2 per cent, as established previously fromthe Hipparcos sample to V= 7.5, is confirmed. While the numbers ofcontact binaries in the ASAS are large and thus the statisticaluncertainties small, derivation of the luminosity function required acorrection for missed systems with small amplitudes and with orbitalperiods longer than 0.562 d; the correction, by a factor of 3, carriesan uncertainty of about 30 per cent.

Photometric Analysis of the W UMa Type Binary V566 Ophiuchi
Not Available

Radial Velocity Studies of Close Binary Stars. XI.
Radial-velocity measurements and sine-curve fits to orbital radialvelocity variations are presented for 10 close binary systems: DU Boo,ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi, andAG Vir. With this contribution, the David Dunlap Observatory program hasreached the point of 100 published radial velocity orbits. The radialvelocities have been determined using an improved fitting technique thatuses rotational profiles to approximate individual peaks in broadeningfunctions. Three systems, ET Boo, VW LMi, and TV UMi, are found to bequadruple, while AG Vir appears to be a spectroscopic triple. ET Boo, amember of a close visual binary with Pvis=113 yr, waspreviously known to be a multiple system, but we show that the secondcomponent is actually a close, noneclipsing binary. The new observationshave enabled us to determine the spectroscopic orbits of the companion,noneclipsing pairs in ET Boo and VW LMi. A particularly interesting caseis VW LMi, for which the period of the mutual revolution of the twospectroscopic binaries is only 355 days. While most of the studiedeclipsing pairs are contact binaries, ET Boo is composed of twodouble-lined detached binaries, and HL Dra is a single-lined detached orsemidetached system. Five systems of this group have been observedspectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-linedbinary), V566 Oph, and AG Vir, but our new data are of much higherquality than in the previous studies.Based on data obtained at the David Dunlap Observatory, University ofToronto, Canada.

Contact Binaries with Additional Components. I. The Extant Data
We have attempted to establish observational evidence for the presenceof distant companions that may have acquired and/or absorbed angularmomentum during the evolution of multiple systems, thus facilitating orenabling the formation of contact binaries. In this preliminaryinvestigation we use several techniques (some of themdistance-independent) and mostly disregard the detection biases ofindividual techniques in an attempt to establish a lower limit to thefrequency of triple systems. While the whole sample of 151 contactbinary stars brighter than Vmax=10 mag gives a firm lowerlimit of 42%+/-5%, the corresponding number for the much better observednorthern-sky subsample is 59%+/-8%. These estimates indicate that mostcontact binary stars exist in multiple systems.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

An Orbital Period Study of the W UMa-Type Binary RZ Comae Berenicis
New photoelectric and CCD photometry observations of a short-period WUMa-type binary system, RZ Com, are presented. The light curves ofBroglia (1960, Contr. Milano-Merate, 165) were symmetric in V band,while the present light curve shows a typical O'Connell effect, withMaximum I brighter than Maximum II by 0.015mag. It is found that thelight curve of the binary star has changed from W-subtype to A-subtypeaccording to Binnendijk's classification. This variation may be causedby the activity of dark spot on the primary component. Combining fournewly determined times of the light minimum with others published in theliterature, the orbital period change of the system was investigated. Asmall-amplitude oscillation (A = 0.0058 d), with a period of 44.8yr hasbeen discovered to be superimposed on a long-term period increase with arate of dP/dt = +4.12 × 10-8 d yr-1. Theperiod oscillation can be explained either by the light-time effect viathe presence of an unseen third body or by magnetic-activity cycles ofthe components. The mass ratio of RZ Com is q = 0.43. The secular periodvariation is in agreement with the conclusions of Qian (2001, MNRAS,328, 914; 2003, MNRAS, 342, 1260). This indicates that it is on theTRO-controlled stage of the evolutionary scheme proposed by Qian.

Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation
We study the kinematics of 129 W UMa binaries and we discuss itsimplications on the contact binary evolution. The sample is found to beheterogeneous in the velocity space. That is, kinematically younger andolder contact binaries exist in the sample. A kinematically young (0.5Gyr) subsample (moving group) is formed by selecting the systems thatsatisfy the kinematical criteria of moving groups. After removing thepossible moving group members and the systems that are known to bemembers of open clusters, the rest of the sample is called the fieldcontact binary (FCB) group. The FCB group is further divided into fourgroups according to the orbital period ranges. Then, a correlation isfound in the sense that shorter-period less-massive systems have largervelocity dispersions than the longer-period more-massive systems.Dispersions in the velocity space indicate a 5.47-Gyr kinematical agefor the FCB group. Compared with the field chromospherically activebinaries (CABs), presumably detached binary progenitors of the contactsystems, the FCB group appears to be 1.61 Gyr older. Assuming anequilibrium in the formation and destruction of CAB and W UMa systems inthe Galaxy, this age difference is treated as an empirically deducedlifetime of the contact stage. Because the kinematical ages (3.21, 3.51,7.14 and 8.89 Gyr) of the four subgroups of the FCB group are muchlonger than the 1.61-Gyr lifetime of the contact stage, the pre-contactstages of the FCB group must dominantly be producing the largedispersions. The kinematically young (0.5 Gyr) moving group covers thesame total mass, period and spectral ranges as the FCB group. However,the very young age of this group does not leave enough room forpre-contact stages, and thus it is most likely that these systems wereformed in the beginning of the main sequence or during thepre-main-sequence contraction phase, either by a fission process or mostprobably by fast spiralling in of two components in a common envelope.

Indirect evidence for short period magnetic cycles in W UMa stars. Period analysis of five overcontact systems.
Complex period variations of five W UMa type binaries (ABAnd, OO Aql, DK Cyg,V566 Oph, U Peg) were investigatedby analyzing their O-C diagrams, and several common features were found.Four of the five systems show secular period variations at a constantrate on the order of |dot{P}sec/P|˜10-7yr-1. In the case of AB And, OOAql, and U Peg a high-amplitude, nearlyone-century long quasi-sinusoidal pattern was also found. It might beexplained as light-time effect, or by some magnetic phenomena, althoughthe mathematical, and consequently the physical, parameters of thesefits are very problematic, as the obtained periods are very close to thelength of the total data range. The most interesting feature of thestudied O-C diagrams is a low amplitude ( 2-4×10-3 d)modulation with a period around 18-20 yr in four of the five cases. Thisphenomenon might be indirect evidence of some magnetic cycle inlate-type overcontact binaries as an analog to the observed activitycycles in RS CVn systems.

163. List of Minima Timings of Eclipsing Binaries by BBSAG Observers
Not Available

On the properties of contact binary stars
We have compiled a catalogue of light curve solutions of contact binarystars. It contains the results of 159 light curve solutions. Theproperties of contact binary stars were studied using the cataloguedata. As is well known since Lucy's (\cite{Lucy68a},b) and Mochnacki's(\cite{Mochnacki81}) studies, primary components transfer their ownenergy to the secondary star via the common envelope around the twostars. This transfer was parameterized by a transfer parameter (ratio ofthe observed and intrinsic luminosities of the primary star). We provethat this transfer parameter is a simple function of the mass andluminosity ratios. We introduced a new type of contact binary stars: Hsubtype systems which have a large mass ratio (q>0.72). These systemsshow behaviour in the luminosity ratio- transfer parameter diagram thatis very different from that of other systems and according to ourresults the energy transfer rate is less efficient in them than in othertypes of contact binary stars. We also show that different types ofcontact binaries have well defined locations on the mass ratio -luminosity ratio diagram. Several contact binary systems do not followLucy's relation (L2/L1 =(M2/M1)0.92). No strict mass ratio -luminosity ratio relation of contact binary stars exists.Tables 2 and 3 are available in electronic form athttp://www.edpsciences.org

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Minimum Times of Several Eclipsing Binaries
We present 26 minima times of 11 eclipsing binaries, observed between1996 and 1999.

162-nd List of Minima Timings of Eclipsing Binaries by BBSAG Observers
Not Available

Catalogue of the field contact binary stars
A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.

Erdgebundene gegenuber Satelliten-Beobachtung.
Not Available

On the performance of GAIA on photometry of eclipsing binaries: The case of four near-contact and contact systems
The light curves of four eclipsing binaries (two near-contact and twocontact) are analysed by means of light curve synthesis techniques toderive the geometric and photometric elements and the physicalparameters of the systems. For the analysis we used ground basedphotometric observations and Hipparcos/Tycho photometric data, whichmimic the photometric observations that should be obtained by GAIA, theapproved Cornerstone 6 mission by ESA. The results are compared and theachievable precision of the basic stellar parameters derived by GAIAphotometry is discussed.

A period investigation of the overcontact binary system V417 Aquilae
A detailed orbital period investigation of the short-period (P=0fd 37)W UMa type star, V417 Aql, is presented based on the analysis of its O-Cdata. It is shown that the period change of the binary system iscontinuous. A periodic variation, with a period of 42.4 years and anamplitude of 0fd 0130, is found superimposed on a long-term perioddecrease (dP/dt=-5.50x10-8 days/year). The period oscillationcan be explained either by the light-time effect via the presence of anunseen third body or by magnetic activity cycles of the components. V417Aql is a W-type overcontact binary system with a low mass ratio ofq=0.36. The long-term period variation is in agreement with theconclusion of Qian (\cite{Qian01}b) that a low-mass ratio W-type systemusually shows a secular period decrease. This suggests that V417 Aql ison the AML-controlled stage of the evolutionary scheme proposed by Qian(\cite{Qian01}b). Meanwhile, the light-curve paradox encountered by TROtheory is discussed.

The 7.5 Magnitude Limit Sample of Bright Short-Period Binary Stars. I. How Many Contact Binaries Are There?
A sample of bright contact binary stars (W UMa type or EW, and related:with β Lyr light curves, EB, and ellipsoidal, ELL-in effect, allbut the detached, EA) to the limit of Vmax=7.5 mag is deemedto include all discoverable short-period (P<1 day) binaries withphotometric variation larger than about 0.05 mag. Of the 32 systems inthe final sample, 11 systems have been discovered by the Hipparcossatellite. The combined spatial density is evaluated at(1.02+/-0.24)×10-5 pc-3. The relativefrequency of occurrence (RFO), defined in relation to the main-sequencestars, depends on the luminosity. An assumption of RFO~=1/500 forMV>+1.5 is consistent with the data, although the numberstatistics is poor with the resulting uncertainty in the spatial densityand the RFO by a factor of about 2. The RFO rapidly decreases forbrighter binaries to a level of 1/5000 for MV<+1.5 and to1/30,000 for MV<+0.5. The high RFO of 1/130, previouslydetermined from the deep OGLE-I sample of disk population W UMa typesystems toward Baade's window, is inconsistent with and unconfirmed bythe new results. Possible reasons for the large discrepancy arediscussed. They include several observational effects but also apossibility of a genuine increase in the contact-binary density in thecentral parts of the Galaxy. Based on data from the Hipparcos satellitemission and from the David Dunlap Observatory, University of Toronto.

Das Brunner Punktesystem.
Not Available

Period Studies of Some Neglected Close Binaries: EP Andromedae, V724 Aquilae, SS Comae, AM Eridani, FZ Orionis, BY Pegasi, EQ Tauri, and NO Vulpeculae
Orbital period changes of eight neglected short-period close binaries,EP And, V724 Aql, SS Com, AM Eri, FZ Ori, BY Peg, EQ Tau, and NO Vul,are presented based on the analysis of their O-C observations. It isfound that the periods of BY Peg and EQ Tau are decreasing at rates ofdP/dt=-1.67×10-7 and -1.72×10-7 dayyr-1, respectively, while the orbital periods of SS Com andAM Eri show secular increase at rates ofdP/dt=+5.91×10-7 and +4.39×10-7 dayyr-1. Weak evidence also indicates that the orbital period ofEP And is increasing. For FZ Ori, the decrease rate of orbital period isrevised. For the other two systems, V724 Aql and NO Vul, their O-C curvecan be described by a sudden period decrease or a continuous perioddecrease; further investigation is needed. The period changes of theeight systems can be explained by mass transfer between the twocomponents and/or mass and angular momentum loss from these binaries. Astrong mass-radius relation for observed contact binaries is formedbased on the parameters given by Maceroni & Van't Veer. It is shownthat the parameters of SS Com and EQ Tau given by Brancewicz &Dworak do not agree with the mass-radius relation. This may suggest thatthe two systems are not yet in contact. In order to understand thephysical properties of these binaries, complete photoelectric or CCDlight curves and radial velocity observations are needed.

Orbital period changes of contact binary systems: direct evidence for thermal relaxation oscillation theory
Orbital period changes of ten contact binary systems (S Ant, ɛCrA, EF Dra, UZ Leo, XZ Leo, TY Men, V566 Oph, TY Pup, RZ Tau and AGVir) are studied based on the analysis of their O-C curves. It isdiscovered that the periods of the six systems, S Ant, ɛ CrA, EFDra, XZ Leo, TY Men and TY Pup, show secular increases. For UZ Leo, itssecular period increase rate is revised. For the three systems, V566Oph, RZ Tau and AG Vir, weak evidence is presented that a periodicoscillation (with periods of 20.4, 28.5 and 40.9yr respectively) issuperimposed on a secular period increase. The cyclic period changes canbe explained by the presence of an unseen third body in the threesystems. All the sample stars studied are contact binaries withM1>=1.35Msolar. Furthermore, orbital periodchanges of 27 hot contact binaries have been checked. It is found that,apart from AW UMa with the lowest mass ratio (q=0.072), none shows anorbital period decrease. The relatively weak magnetic activity in thehotter contact binaries means little angular momentum loss (AML) fromthe systems via magnetic stellar winds. The period increases of these WUMa binaries can be explained by mass transfer from the secondary to theprimary components, which is in agreement with the prediction of thethermal relaxation oscillation (TRO) models. This suggests that theevolution of a hotter W UMa star is mainly controlled by TRO. On theother hand, for a cooler W UMa star(M1<=1.35Msolar), its evolution may be TRO plusAML, which coincides with the recent results of Qian.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

The ASCA Medium Sensitivity Survey (the GIS Catalog Project): Source Catalog
We present the first X-ray source catalog of the ASCA Medium SensitivitySurvey (AMSS, or the GIS catalog project), constructed from data atGalactic latitudes b>10deg observed between 1993 May and 1996December. The catalog utilizes 368 combined fields and contains 1343sources with the detection significance above 5 σ either in thesurvey bands of 0.7-7 keV, 2-10 keV, or 0.7-2 keV, including targetsources. For each source, the ASCA source name, position, a 90% errorradius, count rates in the three bands, detection significances, fluxes,and a hardness ratio are provided. With extensive simulations, wecarefully evaluate the data quality of the catalog. Results fromcross-correlation with other existing catalogs are briefly summarized.

A CCD Photometric Study of the Contact Binary V396 Monocerotis
Complete BV light curves of the W Ursae Majoris binary V396 Mon arepresented. The present CCD photometric observations reveal that thelight curves of the system are obviously asymmetric, with the primarymaximum brighter than the secondary maximum (the ``O'Connell effect'').The light curves are analyzed by means of the latest version of theWilson-Devinney code. The results show that V396 Mon is a W-subtype WUMa contact binary with a mass ratio of 0.402. The asymmetry of thelight curves is explained by a cool spot on the secondary component. Thenature of the overluminosity of the secondary of a W UMa-type system isanalyzed. It is shown that the overluminosity of the secondary isclearly related to the mass of the primary and that, for a W UMa system,the higher the mass of the primary, the greater the overluminosity ofthe secondary. In addition, the overluminosity of the secondary is alsorelated to its own density: the lower the density of the secondary, thegreater its overluminosity.

ROSAT all-sky survey of W Ursae Majoris stars and the problem of supersaturation
From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for 57 WUMa type contact systems. In our sample we detected three stars whichare the shortest period main sequence binaries ever found as X-raysources. For stars with (B-V)_0 < 0.6 the normalized X-ray fluxdecreases with a decreasing color index but for (B-V)_0 > 0.6 aplateau is reached, similar to the saturation level observed for single,rapidly rotating stars. The X-ray flux of W UMa stars is about 4-5 timesweaker than that of the fastest rotating single stars. Because earlytype, low activity variables have longer periods, an apparentperiod-activity relation is seen among our stars, while cool stars with(B-V)_0 > 0.6 and rotation periods between 0.23 and 0.45 days do notshow any such relation. The lower X-ray emission of the single, ultrafast rotators (UFRs) and W UMa stars is interpreted as the result of adecreased coronal filling factor. The physical mechanisms responsiblefor the decreased surface coverage differs for UFRs and W UMa systems.For UFRs we propose strong polar updrafts within a convection zone,driven by nonuniform heating from below. The updrafts should beaccompanied by large scale poleward flows near the bottom of theconvective layer and equatorward flows in the surface layers. The flowsdrag dynamo generated fields toward the poles and create a field-freeequatorial region with a width depending on the stellar rotation rate.For W UMa stars we propose that a large scale horizontal flow embracingboth stars will prevent the magnetic field from producing long-livedstructures filled with hot X-ray emitting plasma. The decreased activityof the fastest rotating UFRs increases the angular momentum loss timescale of stars in a supersaturated state. Thus the existence of a periodcutoff and a limiting mass of W UMa stars can be naturally explained.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Orbital period modulation and quadrupole moment changes in magnetically active close binaries
We discuss the main characteristics of the orbital period modulation inclose binaries with late-type components. We focus on the variousphysical scenarios proposed to explain this phenomenon and, inparticular, Hall's (1989) suggestion that it may be connected withmagnetic activity. Starting from the work of Applegate (1992) and Lanzaet al. (1998a), we develop an integral approach to evaluate thegravitational quadrupole moment of an active star and its variations,which we consider to be an important driver of the observed orbitalperiod changes. The method applies the tensor virial theorem afterChandrasekhar (1961) and directly relates the variation of thequadrupole moment with the changes of kinetic and magnetic energy of thestellar hydromagnetic dynamo. Particular effort has been applied inminimizing the number of free parameters entering the problem. A sampleof 46 close binaries with period changes of alternate signs has beenstudied by our method. The amplitude of the quadrupole moment changeappears to decrease with increasing angular velocity, implying that thetime-variable part of the kinetic energy of rotation varies as delta{cal T}/{cal T} ~ Omega ({-0.93+/-) 0.10}, with a correlationcoefficient of 0.83. The length of the cycle of the orbital periodmodulation seems to be correlated with the angular velocity asPmod ~ Omega ({-0.36+/-) 0.10}, but with a smallercorrelation coefficient of 0.62. These results support the suggestionthat a distributed non-linear dynamo is at work in the convectiveenvelopes of very active stars and that it strongly affects thedifferential rotation. We also discuss the energy budget of the processresponsible for the quadrupole moment variation and find that, onaverage, only ~ 10% of the energy required to maintain the differentialrotation may be lost by dissipation in the turbulent convective envelopeduring a cycle of the orbital period change. The problems of themagnetic field geometry and stability and the relationship between thelength of the activity cycle, as determined by the change of the area ofthe starspots and the orbital period modulation, respectively, are alsoaddressed.

Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars
Not Available

Initial Results of a Comprehensive Ultrasoft Survey of the Einstein IPC Database: Source List and Confirmation of the Selection Procedure
We have carried out a survey of the entire Einstein IPC database (atotal of 5934 sources) to select objects with strong components ofultrasoft X-ray emission (i.e., emission below 0.5 keV). The selectioncriteria are based on ratios of counts within three broad energy bands(i.e., X-ray ``colors''). A total of 516 objects have been selected,with 202 (39%) having been identified through correlations with otherdatabases. Of the currently identified objects, 45% are active galacticnuclei, 28% are stellar objects, 6% are ``normal'' galaxies and galaxyclusters, and the remaining 21% are ``nonstellar'' Galactic objects suchas cataclysmic variables, pulsars, and white dwarfs. We present adiscussion of the survey selection procedure, the list of selectedsources, and discussions of interesting objects from the aforementionedgroups. We discuss the remarkable success of our rather ``lowresolution'' method of estimating spectral shape and present plans forfollow-up studies of the as yet unidentified sources.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Schlangenträger
Right ascension:17h56m52.41s
Declination:+04°59'15.3"
Apparent magnitude:7.592
Distance:71.531 parsecs
Proper motion RA:52.2
Proper motion Dec:75
B-T magnitude:8.114
V-T magnitude:7.636

Catalogs and designations:
Proper Names
HD 1989HD 163611
TYCHO-2 2000TYC 425-247-1
USNO-A2.0USNO-A2 0900-11007218
HIPHIP 87860

→ Request more catalogs and designations from VizieR