Contents
Images
Upload your image
DSS Images Other Images
Related articles
An Overview of the Rotational Behavior of Metal-poor Stars This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.
| Chemical Evolution of Zinc in the Galaxy Not Available
| The End of Nucleosynthesis: Production of Lead and Thorium in the Early Galaxy We examine the Pb and Th abundances in 27 metal-poor stars(-3.1< [Fe/H] <-1.4) whose very heavy metal (Z >56) enrichment was produced only by the rapid (r-) nucleosynthesisprocess. New abundances are derived from Hubble Space Telescope/SpaceTelescope Imaging Spectrograph, Keck/High Resolution EchelleSpectrograph, and Very Large Telescope/UV-Visual Echelle Spectrographspectra and combined with other measurements from the literature to forma more complete picture of nucleosynthesis of the heaviest elementsproduced in the r-process. In all cases, the abundance ratios among therare earth elements and the third r-process peak elements considered(La, Eu, Er, Hf, and Ir) are constant and equivalent to the scaled solarsystem r-process abundance distribution. We compare the stellarobservations with r-process calculations within the classical"waiting-point" approximation. In these computations a superposition of15 weighted neutron-density components in the range 23 <=lognn <= 30 is fit to the r-process abundance peaks tosuccessfully reproduce both the stable solar system isotopicdistribution and the stable heavy element abundance pattern between Baand U in low-metallicity stars. Under these astrophysical conditions,which are typical of the "main" r-process, we find very good agreementbetween the stellar Pb r-process abundances and those predicted by ourmodel. For stars with anomalously high Th/Eu ratios (the so-calledactinide boost), our observations demonstrate that any nucleosyntheticdeviations from the main r-process affect—at most—only theelements beyond the third r-process peak, namely Pb, Th, and U. Ourtheoretical calculations also indicate that possible r-process abundance"losses" by nuclear fission are negligible for isotopes along ther-process path between Pb and the long-lived radioactive isotopes of Thand U.
| Enrichment of Lead (Pb) in the Galactic Halo We determined lead (Pb) abundances for 12 red giants with the stellarmetallicity [Fe/H] ranging between ?2.1 and ?1.3 and itsupper limits for 2 lower-metallicity objects, as well as lanthanum (La)and europium (Eu) abundances. The averages of [Pb/Fe] and [Pb/Eu] were?0.3 and ?0.6, respectively, and no clear increase of theseratios with increasing metallicity was found. The [La/Eu] values areonly slightly higher than that of the r-process component insolar-system material. These results, together with the previous studiesfor globular clusters, suggest a small contribution of the s-process tothe Pb abundance of the field stars studied here, supporting an estimateof Pb production by the r-process from the solar-system abundances.
| Asymmetries in the Spectral Lines of Evolved Halo Stars We do an initial reconnaissance of asymmetries of spectral lines inmetal-poor field stars using high-resolution observations of four redhorizontal-branch and 11 red giant branch stars taken with the coudespectrograph at the Canada-France-Hawaii Telescope. We find that (1) theshapes of the line bisectors for metal-poor stars hotter than 4100 Kmimic the well-known C shape of bisectors for solar-metallicity stars onthe cool side of the granulation boundary while (2) metal-poor starscooler than 4100 K, or higher up the red giant branch than MV = –1.5, show bisectors with a reversed-C shape,similar to those for solar-metallicity stars on the hot side of thegranulation boundary and similar to the reversed-C shape found in aprevious study for the M-type supergiant Betelgeuse. The well-documentedradial-velocity jitter of high-luminosity stars and the line bisectorcharacteristics vary in concert up the red giant branch; both phenomenaare probably signatures of large convection cells.Based on observations obtained at the Canada-France-Hawaii Telescope(CFHT) which is operated by the National Research Council of Canada, theInstitut National des Sciences de l'Univers of the Centre National de laRecherche Scientifique de France, and the University of Hawaii.
| Stellar populations, neutral hydrogen, and ionised gas in field early-type galaxies Aims: We present a study of the stellar populations of a sample of 39local, field early-type galaxies whose H I properties are known frominterferometric data. Our aim is to understand whether stellar age andchemical composition depend on the H I content of galaxies. We alsostudy their ionised gas content and how it relates to the neutralhydrogen gas. Methods: Stellar populations and ionised gas arestudied from optical long-slit spectra. We determine stellar age,metallicity and alpha-to-iron ratio by analysing a set of Lick/IDSline-strength indices measured from the spectra after modelling andsubtracting the ionised-gas emission. Results: We do not find anytrend in the stellar populations parameters with M(H I). However, we dofind that, at stellar velocity dispersion ?? 230 kms-1, 2/3 of the galaxies with less than 108M? of H I are centrally rejuvenated, while none of the HI-richer systems is. Furthermore, none of the more massive, ??230 km s-1-objects is centrally rejuvenated independently oftheir H I mass. Concerning the ionised gas, we detect emission in 60% ofthe sample. This is generally extended and always characterised byLINER-like emission-line ratios at any radius. We find that a large H Imass is necessary (but not sufficient) for a galaxy to host brightionised-gas emission. Conclusions: A plausible interpretation ofour results is that gas-rich mergers play a significant role in E/S0formation, especially at lower ?. Within this picture, H I-poor,centrally-rejuvenated objects could form in mergers where gasangular-momentum removal (and therefore inflow) is efficient; H I-richgalaxies with no significant age gradients (but possibly uniformlyyoung) could be formed in interactions characterised by high-angularmomentum gas.Appendix A and Tables [see full textsee full textsee full text]-[seefull textsee full textsee full text] are only available in electronicform at http://www.aanda.org
| Rotation and Macroturbulence in Metal-Poor Field Red Giant and Red Horizontal Branch Stars We report the results for rotational velocities, Vrot sin i,and macroturbulence dispersions, ζRT, for 12 metal-poorfield red giant branch (RGB) stars and 7 metal-poor field red horizontalbranch (RHB) stars. The results are based on Fourier transform analysesof absorption line profiles from high-resolution (R ≈ 120,000),high-S/N (≈215 per pixel; ≈345 per resolution element) spectraobtained with the Gecko spectrograph at the Canada-France-HawaiiTelescope (CFHT). The stars were selected from the authors' previousstudies of 20 RHB and 116 RGB stars, based primarily onlarger-than-average line-broadening values. We find thatζRT values for the metal-poor RGB stars are very similarto those for metal-rich disk giants studied earlier by Gray and hiscollaborators. Six of the RGB stars have small rotational values, lessthan 2.0 km s-1, while five show significantrotation/enhanced line broadening, over 3 km s-1. We confirmthe rapid rotation rate for RHB star HD 195636, found earlier byPreston. This star's rotation is comparable to that of the fastest knownrotating blue horizontal branch (BHB) stars, when allowance is made fordifferences in radii and moments of inertia. The other six RHB starshave somewhat lower rotation but show a trend to higher values at highertemperatures (lower radii). Comparing our results with those for BHBstars from Kinman et al., we find that the fraction of rapidly rotatingRHB stars is somewhat lower than is found among BHB stars. The number ofrapidly rotating RHB stars is also smaller than we would have expectedfrom the observed rotation of the RGB stars. We devise two empiricalmethods to translate our earlier line-broadening results intoVrot sin i for all the RGB and RHB stars they studied.Binning the RGB stars by luminosity, we find that most metal-poor fieldRGB stars show no detectable sign, on average, of rotation, which is notsurprising given the stars' large radii. However, the most luminousstars, with MV <= -1.5, do show net rotation, with meanvalues of 2-4 km s-1, depending on the algorithm employed,and also show signs of radial velocity jitter and mass loss. This"rotation" may in fact prove to be due to other line-broadening effects,such as shock waves or pulsation.Based on observations obtained at the Canada-France-Hawaii Telescope(CFHT) which is operated by the National Research Council of Canada, theInstitut National des Sciences de l'Univers of the Centre National de laRecherche Scientifique de France, and the University of Hawaii.
| Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.
| Line Broadening in Field Metal-Poor Red Giant and Red Horizontal Branch Stars We report 349 radial velocities for 45 metal-poor field red giant branch(RGB) and red horizontal branch (RHB) stars, with time coverage rangingfrom 1 to 21 years. We have identified one new spectroscopic binary, HD4306, and one possible such system, HD 184711. We also provide 57 radialvelocities for 11 of the 91 stars reported in our previous work. All butone of the 11 stars had been found to have variable radial velocities.New velocities for the long-period spectroscopic binaries BD-1 2582 andHD 108317 have extended the time coverage to 21.7 and 12.5 years,respectively, but in neither case have we yet completed a full orbitalperiod. As was found in the previous study, radial velocity "jitter" ispresent in many of the most luminous stars. Excluding stars showingspectroscopic binary orbital motion, all 7 of the red giants withestimated MV values more luminous than -2.0 display jitter,as well as 3 of the 14 stars with -2.0 < MV <= -1.4. Wehave also measured the line broadening in all the new spectra, usingsynthetic spectra as templates. Comparison with results fromhigh-resolution and higher signal-to-noise (S/N) spectra employed byother workers shows good agreement down to line-broadening levels of 3km s-1, well below our instrumental resolution of 8.5 kms-1. As the previous work demonstrated, the majority of themost luminous red giants show significant line broadening, as do many ofthe red horizontal branch stars, and we briefly discuss possible causes.The line broadening appears related to velocity jitter, in that bothappear primarily among the highest luminosity red giants.
| Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index We present a new calibration of the Strömgren metallicity indexm1 using red giant (RG) stars in four globular clusters (GCs:M92, M13, NGC 1851, 47 Tuc) with metallicity ranging from -2.2 to -0.7,marginally affected by reddening [E(B-V)<=0.04] and with accurate(u,v,b,y) photometry. The main difference between the newmetallicity-index-color (MIC) relations and similar relations availablein the literature is that we have adopted the u-y and v-y colors insteadof b-y. These colors present a stronger sensitivity to effectivetemperature, and the MIC relations show a linear slope. The differencebetween photometric estimates and spectroscopic measurements for RGs inM71, NGC 288, NGC 362, NGC 6397, and NGC 6752 is 0.04+/-0.03 dex(σ=0.11 dex). We also apply the new MIC relations to 85 field RGswith metallicity ranging from -2.4 to -0.5 and accurate reddeningestimates. We find that the difference between photometric estimates andspectroscopic measurements is -0.14+/-0.01 dex (σ=0.17 dex). Wealso provide two sets of MIC relations based on evolutionary models thathave been transformed into the observational plane by adopting eithersemiempirical or theoretical color-temperature relations. We apply thesemiempirical relations to the nine GCs and find that the differencebetween photometric and spectroscopic metallicities is 0.04+/-0.03 dex(σ=0.10 dex). A similar agreement is found for the sample of fieldRGs, with a difference of -0.09+/-0.03 dex (with σ=0.19 dex). Thedifference between metallicity estimates based on theoretical relationsand spectroscopic measurements is -0.11+/-0.03 dex (σ=0.14 dex)for the nine GCs and -0.24+/-0.03 dex (σ=0.15 dex) for the fieldRGs. Current evidence indicates that new MIC relations providemetallicities with an intrinsic accuracy better than 0.2 dex.Based in part on observations collected with the 1.54 m Danish Telescopeoperated at ESO (La Silla, Chile) and with the Nordic Optical Telescope(NOT) operated at La Palma (Spain).
| Halo Star Streams in the Solar Neighborhood We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^ Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.
| Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.
| The Rise of the s-Process in the Galaxy From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| The Indo-US Library of Coudé Feed Stellar Spectra We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.
| Oxygen Abundances in Metal-poor Stars We present oxygen abundances derived from both the permitted andforbidden oxygen lines for 55 subgiants and giants with [Fe/H] valuesbetween -2.7 and solar with the goal of understanding the discrepancy inthe derived abundances. A first attempt, using Teff valuesfrom photometric calibrations and surface gravities from luminositiesobtained agreement between the indicators for turn-off stars, but thedisagreement was large for evolved stars. We find that the difference inthe oxygen abundances derived from the permitted and forbidden lines ismost strongly affected by Teff, and we derive a newTeff scale based on forcing the two sets of lines to give thesame oxygen abundances. These new parameters, however, do not agree withother observables, such as theoretical isochrones or Balmer-line profilebased Teff determinations. Our analysis finds thatone-dimensional, LTE analyses (with published non-LTE corrections forthe permitted lines) cannot fully resolve the disagreement in the twoindicators without adopting a temperature scale that is incompatiblewith other temperature indicators. We also find no evidence ofcircumstellar emission in the forbidden lines, removing such emission asa possible cause for the discrepancy.
| STELIB: A library of stellar spectra at R ~ 2000 We present STELIB, a new spectroscopic stellar library, available athttp://webast.ast.obs-mip.fr/stelib. STELIB consists of an homogeneouslibrary of 249 stellar spectra in the visible range (3200 to 9500Å), with an intermediate spectral resolution (la 3 Å) andsampling (1 Å). This library includes stars of various spectraltypes and luminosity classes, spanning a relatively wide range inmetallicity. The spectral resolution, wavelength and spectral typecoverage of this library represents a substantial improvement overprevious libraries used in population synthesis models. The overallabsolute photometric uncertainty is 3%.Based on observations collected with the Jacobus Kaptein Telescope,(owned and operated jointly by the Particle Physics and AstronomyResearch Council of the UK, The Nederlandse Organisatie voorWetenschappelijk Onderzoek of The Netherlands and the Instituto deAstrofísica de Canarias of Spain and located in the SpanishObservatorio del Roque de Los Muchachos on La Palma which is operated bythe Instituto de AstrofÃsica de Canarias), the 2.3 mtelescope of the Australian National University at Siding Spring,Australia, and the VLT-UT1 Antu Telescope (ESO).Tables \ref{cat1} to \ref{cat6} and \ref{antab1} to A.7 are onlyavailable in electronic form at http://www.edpsciences.org. The StellarLibrary STELIB library is also available at the CDS, via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/433
| Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org
| The r-Process in the Early Galaxy We report Sr, Pd, and Ag abundances for a sample of metal-poor fieldgiants and analyze a larger sample of Y, Zr, and Ba abundances. The[Y/Zr] and [Pd/Ag] abundance ratios are similar to those measured forthe r-process-rich stars CS 22892-052 and CS 31082-001. The [Pd/Ag]ratio is larger than predicted from the solar system r-processabundances. The constant [Y/Zr] and [Sr/Y] values in the field starsplace strong limits on the contributions of the weak s-process and themain s-process to the light neutron-capture elements. Stars in theglobular cluster M15 possess lower [Y/Zr] values than the field stars.There is a large dispersion in [Y/Ba]. Because the r-process isresponsible for the production of the heavy elements in the earlyGalaxy, these dispersions require varying light-to-heavy ratios inr-process yields.
| Keck NIRSPEC Infrared OH Lines: Oxygen Abundances in Metal-poor Stars down to [Fe/H] = -2.9 Infrared OH lines at 1.5-1.7 μm in the H band were obtained with theNIRSPEC high-resolution spectrograph at the 10 m Keck Telescope for asample of seven metal-poor stars. Detailed analyses have been carriedout, based on optical high-resolution data obtained with the Fiber-fedExtended Range Optical Spectrograph at ESO. Stellar parameters werederived by adopting infrared flux method effective temperatures,trigonometric and/or evolutionary gravities, and metallicities from FeII lines. We obtain that the sample stars with metallicities[Fe/H]<-2.2 show a mean oxygen abundance [O/Fe]~0.54 for a solaroxygen abundance of ɛ(O)=8.87, or [O/Fe]~0.64 ifɛ(O)=8.77 is assumed. Observations carried out with the KeckTelescope within the Gemini-Keck agreement, and at the European SouthernObservatory.
| New periodic variables from the Hipparcos epoch photometry Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.
| Abundances of 30 Elements in 23 Metal-Poor Stars We report the abundances of 30 elements in 23 metal-poor([Fe/H]<-1.7) giants. These are based on 7774 equivalent widths andspectral synthesis of 229 additional lines. Hyperfine splitting is takeninto account when appropriate. Our choice of model atmospheres has themost influence on the accuracy of our abundances. We consider the effectof different model atmospheres on our results. In addition to the randomerrors in Teff, logg, and microturbulent velocity, there areseveral sources of systematic error. These include using Teffdetermined from Fe I lines rather than colors, ignoring non-LTE effectson the Fe I/Fe II ionization balance, using models with solar[α/Fe] ratios, and using Kurucz models with overshooting. Ofthese, only the use of models with solar [α/Fe] ratios had anegligible effect. However, while the absolute abundances can change bygreater than 0.10 dex, the relative abundances, especially betweenclosely allied atoms such as the rare earth group, often show only small(less than 0.03 dex) changes. We found that some strong lines of Fe I,Mn I, and Cr I consistently gave lower abundances by ~0.2 dex, a numberlarger than the quoted errors in the gf-values. After considering amodel with depth-dependent microturbulent velocity and a model withhotter temperatures in the upper layers, we conclude that the latter dida better job of resolving the problem and agreeing with observationalevidence for the structure of stars. The error analysis includes theeffects of correlation of Teff, logg, and ξ errors, whichis crucial for certain element ratios, such as [Mg/Fe]. The abundancespresented here are being analyzed and discussed in a separate series ofpapers.
| Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships As an investigation of the origin of ``α-poor'' halo stars, weanalyze kinematic and abundance data for 73 intermediate-metallicitystars (-1>[Fe/H]>=-2) selected from Paper I of this series. We findevidence for a connection between the kinematics and the enhancement ofcertain element-to-iron ([X/Fe]) ratios in these stars. Statisticallysignificant correlations were found between [X/Fe] and galacticrest-frame velocities (vRF) for Na, Mg, Al, Si, Ca, and Ni,with marginally significant correlations existing for Ti and Y as well.We also find that the [X/Fe] ratios for these elements all correlatewith a similar level of significance with [Na/Fe]. Finally, we comparethe abundances of these halo stars against those of stars in nearbydwarf spheroidal (dSph) galaxies. We find significant differencesbetween the abundance ratios in the dSph stars and halo stars of similarmetallicity. From this result, it is unlikely that the halo stars in thesolar neighborhood, including even the ``α-poor'' stars, were oncemembers of disrupted dSph galaxies similar to those studied to date.
| 12C/13C in Metal-poor Field Halo Giants We have estimated 12C/13C in 15 metal-poor(-2.4<=[Fe/H]<=-1.0) field halo giant stars from spectra of the13CO v=3-1 and v=2-0 band heads and surrounding12CO and 13CO R-branch lines. Our isotope ratiosare consistent with previous measurements for stars in our sample with12C/13C determined either from the infraredfirst-overtone bands of CO or from optical G-band spectra of CH and redsystem bands of CN. We have also compiled carbon isotope ratios from theliterature for a much larger sample of field and cluster red giantbranch (RGB) stars spanning a wide range of metallicities(-2.4<=[Fe/H]<=solar). Combining these data, we confirm thedecline of the isotope ratio as stars evolve up the RGB and we haveidentified a trend toward higher levels of mixing in more metal-poorstars. Standard RGB first dredge-up models do not predict the carbonisotope ratios that we observe in the more evolved (higher luminosity)metal-poor stars, but more recent models that account for other mixingmechanisms can explain these data; even for very metal-poor stars suchas those that we have observed in the Galactic halo.
| Oxygen Abundances in Metal-poor Stars (-2.2<[Fe/H]<-1.2) from Infrared OH Lines Infrared OH lines at 1.55-1.56 μm in the H band were obtained withthe Phoenix high-resolution spectrograph at the 2.1 m telescope of theKitt Peak National Observatory for a sample of 14 metal-poor stars.Detailed analyses of the sample stars have been carried out, derivingstellar parameters based on two methods: (a) spectroscopic parametersand (b) infrared flux method (IRFM) effective temperatures,trigonometric gravities, and metallicities from Fe II lines. The Fe Ilines present in the H-band region observed were well fitted by thestellar parameters within Δ[Fe/H]<=0.15 dex. The oxygenabundances were derived from fits of spectrum synthesis calculations tothe infrared OH lines. CO lines in the H and K bands were obtained for asubsample in order to determine their carbon abundances. Adopting thespectroscopic parameters, a mean oxygen-to-iron ratio of [O/Fe]~0.52 isobtained, whereas using the IRFM temperatures, Hipparcos gravities, and[Fe II/H], [O/Fe]~0.25 is found. A mean of the two methods gives a finalvalue of [O/Fe]~0.4 for the metallicity range -2.2<[Fe/H]<-1.2 ofthe sample metal-poor stars.
| Catalogue of [Fe/H] determinations for FGK stars: 2001 edition The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.
| Th Ages for Metal-poor Stars With a sample of 22 metal-poor stars, we demonstrate that theheavy-element abundance pattern (Z>=56) is the same as the r-processcontributions to the solar nebula. This bolsters the results of previousstudies that there is a universal r-process production pattern. We usethe abundance of thorium in five metal-poor stars, along with anestimate of the initial Th abundance based on the abundances of stabler-process elements, to measure their ages. We have four field red giantswith errors of 4.2 Gyr in their ages and one M92 giant with an error of5.6 Gyr, based on considering the sources of observational error only.We obtain an average age of 11.4 Gyr, which depends critically on theassumption of an initial Th/Eu production ratio of 0.496. If theuniverse is 15 Gyr old, then the (Th/Eu)0 should be 0.590, inagreement with some theoretical models of the r-process.
| A database of high and medium-resolution stellar spectra We present a database of 908 spectra of 709 stars obtained with theELODIE spectrograph at the Observatoire de Haute-Provence. 52 orders ofthe echelle spectra have been carefully fitted together to providecontinuous, high-resolution spectra in the wavelength range lambdalambda = 410-680 nm. The archive provides a large coverage of the spaceof atmospheric parameters: T_eff from 3700 K to 13 600 K, log g from0.03 to 5.86 and [Fe/H] from -2.8 to +0.7. At the nominal resolution,R=42 000, the mean signal-to-noise ratio is 150 per pixel. The spectragiven at this resolution are normalized to their pseudo-continuum andare intended to serve for abundance studies, spectral classification andtests of stellar atmosphere models. A lower resolution version of thearchive, at R=10 000, is calibrated in physical flux with a broad-bandphotometric precision of 2.5% and narrow-band precision of 0.5%. It iswell suited to stellar population synthesis of galaxies and clusters,and to kinematical investigations of stellar systems. The archive isdistributed in FITS format through the HYPERCAT and CDS databases. Basedon observations made on the 193 cm telescope at the Haute-ProvenceObservatory, France. Table 1 is only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/1048
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Ηριδανός |
Right ascension: | 04h38m55.73s |
Declination: | -13°20'48.1" |
Apparent magnitude: | 8.359 |
Distance: | 1515.152 parsecs |
Proper motion RA: | -11.4 |
Proper motion Dec: | -55.1 |
B-T magnitude: | 10.074 |
V-T magnitude: | 8.501 |
Catalogs and designations:
|