Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
The star is adopted or is not available for adoption  

η Cep (Al Agemim)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Detection Limits from the McDonald Observatory Planet Search Program
Based on the long-term radial velocity surveys carried out with theMcDonald Observatory 2.7 m Harlan J. Smith Telescope from 1988 to thepresent, we derive upper limits to long-period giant planet companionsfor 31 nearby stars. Data from three phases of the McDonald Observatory2.7 m planet-search program have been merged together, and for 17objects data from the pioneering Canada-France-Hawaii Telescope radialvelocity program have also been included in the companion-limitsdetermination. For those 17 objects, the baseline of observations is inexcess of 23 yr, enabling the detection or exclusion of giant planets inorbits beyond 8 AU. We also consider the possibility of eccentric orbitsin our computations. At an orbital separation of 5.2 AU, we can excludeon average planets of Msini>~(2.0+/-1.1)MJ (e=0) andMsini>~(4.0+/-2.8)MJ (e=0.6) for 25 of the 31 stars inthis survey. However, we are not yet able to rule out ``true Jupiters,''i.e., planets of Msini~1MJ in 5.2 AU orbits. These limits areof interest for the Space Interferometry Mission, Terrestrial PlanetFinder, and Darwin missions, which will search for terrestrial planetsorbiting nearby stars, many of which are included in this work.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Precise radial velocities of giant stars. I. Stable stars
Context: .Future astrometric missions such as SIM PlanetQuest need verystable reference stars. K giants have large luminosities, which placethem at large distances and thus the jitter of their photocenters bycompanions is relatively small. Therefore K giants would be best suitedas references. To confirm this observationally a radial velocity surveyis performed to quantify the level of intrinsic variability in Kgiants. Aims: .From this radial velocity survey we present 34 Kgiants with an observed standard deviation of the radial velocity ofless than 20 m/s. These stars are considered "stable" and can be used asradial velocity standards. Methods: .The radial velocity surveycontains 179 K giants. All K giants have a declination between -30°and +65° and visual magnitude of 3{-}6 mag. The CoudéAuxiliary Telescope (CAT) at UCO/Lick Observatory is used to obtainradial velocities with an accuracy of 5{-}8 m/s. The number of epochsfor the 34 stable stars ranges from 11 to 28 with a total timespan ofthe observations between 1800 and a little over 2200 days. Results: .The observational results of the 34 "stable" stars are showntogether with a discussion about their position in the MV vs.B-V diagram and some conclusions concerning the radial velocityvariability of K giants. These results are in agreement with thetheoretical predictions. K giants in a certain range of theMV vs. B-V diagram are suitable reference stars.

Shapes of Spectral Line Bisectors for Cool Stars
The shape of the line bisector for the prototype spectral line Fe Iλ6253 was measured for an array of 54 stars on the cool half ofthe HR diagram. These bisectors are given in tables along with theirerrors. The classic C shape is shown by only a rather restricted rangein effective temperature and luminosity. The detailed change in bisectorshape with effective temperature and luminosity is documented moreprecisely than in previous work. The most blueward point on the bisectorchanges its height systematically with luminosity and can be used as aluminosity or gravity discriminant. The wide range of bisector shapescontains significant information about the velocity fields in theatmospheres of these stars, but extracting that information may requireextensive modeling.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

Radial Velocities of Late-Type Field Subgiant Stars
High-dispersion coudé spectra were observed and measured for 43field subgiants of the G and K spectral types, with the intent ofsearching for hitherto undiscovered spectroscopic binaries. Statisticalanalysis of the measurements revealed no definite but two possible newbinaries. We present the data and discuss the statistical analysis usedto test for new binaries. Additionally, we discuss the techniques forhigh precision of radial-velocity measurement, and the systematic errorsthat interfere with that goal.

Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?
We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.

The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations
We present up-to-date metallicity-dependent temperature versus colorcalibrations for main-sequence and giant stars based on temperaturesderived with the infrared flux method (IRFM). Seventeen colors in thephotometric systems UBV, uvby, Vilnius, Geneva, RI(Cousins), DDO,Hipparcos-Tycho, and Two Micron All Sky Survey (2MASS) have beencalibrated. The spectral types covered by the calibrations range from F0to K5 (7000K>~Teff>~4000K) with some relationsextending below 4000 K or up to 8000 K. Most of the calibrations arevalid in the metallicity range -3.5>~[Fe/H]>~0.4, although some ofthem extend to as low as [Fe/H]~-4.0. All fits to the data have beenperformed with more than 100 stars; standard deviations range from 30 to120 K. Fits were carefully performed and corrected to eliminate thesmall systematic errors introduced by the calibration formulae. Tablesof colors as a function of Teff and [Fe/H] are provided. Thiswork is largely based on the study by A. Alonso and collaborators; thus,our relations do not significantly differ from theirs except for thevery metal-poor hot stars. From the calibrations, the temperatures of 44dwarf and giant stars with direct temperatures available are obtained.The comparison with direct temperatures confirms our finding in Paper Ithat the zero point of the IRFM temperature scale is in agreement, tothe 10 K level, with the absolute temperature scale (that based onstellar angular diameters) within the ranges of atmospheric parameterscovered by those 44 stars. The colors of the Sun are derived from thepresent IRFM Teff scale and they compare well with those offive solar analogs. It is shown that if the IRFM Teff scaleaccurately reproduces the temperatures of very metal-poor stars,systematic errors of the order of 200 K, introduced by the assumption of(V-K) being completely metallicity independent when studying verymetal-poor dwarf stars, are no longer acceptable. Comparisons with otherTeff scales, both empirical and theoretical, are also shownto be in reasonable agreement with our results, although it seems thatboth Kurucz and MARCS synthetic colors fail to predict the detailedmetallicity dependence, given that for [Fe/H]=-2.0, differences as highas approximately +/-200 K are found.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

UVBLUE: A New High-Resolution Theoretical Library of Ultraviolet Stellar Spectra
We present an extended ultraviolet-blue (850-4700 Å) library oftheoretical stellar spectral energy distributions computed at highresolution, λ/Δλ=50,000. The UVBLUE grid, as wenamed the library, is based on LTE calculations carried out with ATLAS9and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800entries that cover a large volume of the parameter space. It spans arange in Teff from 3000 to 50,000 K, the surface gravityranges from logg=0.0 to 5.0 with Δlogg=0.5 dex, while sevenchemical compositions are considered:[M/H]=-2.0,-1.5,-1.0,-0.5,+0.0,+0.3, and +0.5 dex. For its coverageacross the Hertzsprung-Russell diagram, this library is the mostcomprehensive one ever computed at high resolution in theshort-wavelength spectral range, and useful application can be foreseenfor both the study of single stars and in population synthesis models ofgalaxies and other stellar systems. We briefly discuss some relevantissues for a safe application of the theoretical output to ultravioletobservations, and a comparison of our LTE models with the non-LTE (NLTE)ones from the TLUSTY code is also carried out. NLTE spectra are found,on average, to be slightly ``redder'' compared to the LTE ones for thesame value of Teff, while a larger difference could bedetected for weak lines, which are nearly wiped out by the enhanced coreemission component in case of NLTE atmospheres. These effects seem to bemagnified at low metallicity (typically [M/H]<~-1). A match with aworking sample of 111 stars from the IUE atlas, with availableatmosphere parameters from the literature, shows that UVBLUE modelsprovide an accurate description of the main mid- and low-resolutionspectral features for stars along the whole sequence from the B to ~G5type. The comparison sensibly degrades for later spectral types, withsupergiant stars that are in general more poorly reproduced than dwarfs.As a possible explanation of this overall trend, we partly invoke theuncertainty in the input atmosphere parameters to compute thetheoretical spectra. In addition, one should also consider the importantcontamination of the IUE stellar sample, where the presence of binaryand variable stars certainly works in the sense of artificiallyworsening the match between theory and observations.

Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters
We present metallicity estimates for seven open clusters based onspectrophotometric indices from moderate-resolution spectroscopy.Observations of field giants of known metallicity provide a correlationbetween the spectroscopic indices and the metallicity of open clustergiants. We use χ2 analysis to fit the relation ofspectrophotometric indices to metallicity in field giants. The resultingfunction allows an estimate of the target-cluster giants' metallicitieswith an error in the method of +/-0.08 dex. We derive the followingmetallicities for the seven open clusters: NGC 1245, [M/H]=-0.14+/-0.04NGC 2099, [M/H]=+0.05+/-0.05 NGC 2324, [M/H]=-0.06+/-0.04 NGC 2539,[M/H]=-0.04+/-0.03 NGC 2682 (M67), [M/H]=-0.05+/-0.02 NGC 6705,[M/H]=+0.14+/-0.08 NGC 6819, [M/H]=-0.07+/-0.12. These metallicityestimates will be useful in planning future extrasolar planet transitsearches, since planets may form more readily in metal-richenvironments.

The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses
In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.

Stars within 15 Parsecs: Abundances for a Northern Sample
We present an abundance analysis for stars within 15 pc of the Sunlocated north of -30° declination. We have limited our abundancesample to absolute magnitudes brighter than +7.5 and have eliminatedseveral A stars in the local vicinity. Our final analysis list numbers114 stars. Unlike Allende Prieto et al. in their consideration of a verysimilar sample, we have enforced strict spectroscopic criteria in thedetermination of atmospheric parameters. Nevertheless, our results arevery similar to theirs. We determine the mean metallicity of the localregion to be <[Fe/H]>=-0.07 using all stars and -0.04 when interlopersfrom the thick disk are eliminated.

Disk populations from HIPPARCOS kinematic data. Discontinuities in the local velocity distribution
The full space motions including radial velocities of a stellarsample drawn from HIPPARCOS catalogue are used to discriminatedifferentiated statistical behaviours that are associated with stellarpopulations in the solar neighbourhood. A sampling parameter is used tobuild a hierarchical set of nested samples, where a discontinuouspattern, based in a partition introduced by two normal distributions,scans the subsamples. Two quantities inform whether any subsample fitsproperly into the discontinuous model. A χ2 test measuresthe Gaussianity of both components, and the entropy of the mixtureprobability gives account of how informative the resulting segregationis. The less informative partition is the one with maximum populationentropy, which provides most representative kinematic parameters. Eachnew population merged to the cumulative subsample produces adiscontinuity in the plot entropy versus sampling parameter, that allowsto determine the number of populations contained in the whole sample.The resulting method has been named MEMPHIS, Maximum Entropy of theMixture Probability from HIerarchical Segregation. In addition to bothmain kinematic components, thin and thick disk, with respective velocitydispersions (28± 1, 16± 2, 13± 1) and (65±2, 39± 9, 41± 2) km s-1, two discretenon-Gaussian subcomponents are detected within the thin disk. Thesepopulations are identified with early-type and young disk stars.Moreover, a continuous old disk population is mixed with the foregoingsubcomponents composing all together the thin disk. Older thin diskstars have a velocity dispersion overlapping a wing of the thick disk.Although they could appear like an intermediate continuous population,nested subsamples distributions allow us to conclude that theydefinitively belong to the thin disk, and that a clear discontinuitydetaches thick from thin disk. Almost the same qualitative results, butwith less accuracy, are obtained whether MEMPHIS is applied tosubsamples from the Third Catalogue of Nearby Stars (CNS3). A dynamicmodel according to Chandrasekhar's approximation, under particularsymmetry hypotheses, allows to interpret the results. The non-vanishingvertex deviation lower for older stars of all Galactic components issuggesting that, at least, point-axial symmetry is required in order toexplain the local kinematic behaviour. According to this model, theoldest thick disk population, with no net radial movement, can beextrapolated, having heliocentric velocities of -76 ± 2 kms-1 in rotation, and -18 ± 1 km s-1 in theradial direction. Early-type stars show a worthy local singularity,nearly with no net radial motion, similarly to the oldest thick diskstars. Older populations half of the thin disk and the whole thickdisk share a common differential galactic movement, suggesting acommon dynamical origin for the rupture of the axial symmetry. Therelationship between the maximum stellar velocity of a sample and itsaverage age τ is discussed, finding an approximate relation|V|max ∝ τ. Local stellar populations can bedescribed from a Titius-Bode-like law for the radial velocitydispersion, σ1 = 6.6 (4/3)^x, so that for naturalvalues x=2,3,5,8 it determines average energy levels of discretepopulations, while for continuous intervals x≤ 5 and x≥ 7 itdescribes the velocity-age evolution of thin and thick disk components,according to x ˜ 1.5 ln τ.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band
Infrared interferometry of supergiant and Mira stars has recently beenreinterpreted as revealing the presence of deep molecular layers.Empirical models for a photosphere surrounded by a simple molecularlayer or envelope have led to a consistent interpretation of previouslyinconsistent data. The stellar photospheres are found to be smaller thanpreviously understood, and the molecular layer is much higher and denserthan predicted by hydrostatic equilibrium. However, the analysis wasbased on spatial observations with medium-band optical filters, whichmixed the visibilities of different spatial structures. This paperreports spatial interferometry with narrow spectral bands, isolatingnear-continuum and strong molecular features, obtained for thesupergiant μ Cep. The measurements confirm strong variation ofapparent diameter across the K-band. A layer model shows that a stellarphotosphere of angular diameter 14.11±0.60 mas is surrounded by amolecular layer of diameter 18.56±0.26 mas, with an opticalthickness varying from nearly zero at 2.15 μm to >1 at 2.39 μm.Although μ Cep and α Ori have a similar spectral type,interferometry shows that they differ in their radiative properties.Comparison with previous broad-band measurements shows the importance ofnarrow spectral bands. The molecular layer or envelope appears to be acommon feature of cool supergiants.

Spectroscopic determination of photospheric parameters and chemical abundances of 6 K-type stars^
High resolution, high -S/N- ratio optical spectra have been obtained fora sample of 6 K-type dwarf and subgiant stars, and have been analysedwith three different LTE methods in order to derive detailedphotospheric parameters and abundances and to compare thecharacteristics of analysis techniques. The results have been comparedwith the aim of determining the most robust method to perform completespectroscopic analyses of K-type stars, and in this perspective thepresent work must be considered as a pilot study. In this context wehave determined the abundance ratios with respect to iron of severalelements. In the first method the photospheric parameters (T_eff, log g,and ξ) and metal abundances are derived using measured equivalentwidths and Kurucz LTE model atmospheres as input for the MOOG softwarecode. The analysis proceeds in an iterative way, and relies on theexcitation equilibrium of the ion{Fe}{i} lines for determining theeffective temperature and microturbulence, and on the ionizationequilibrium of the ion{Fe}{i} and ion{Fe}{ii} lines for determining thesurface gravity and the metallicity. The second method follows a similarapproach, but discards the ion{Fe}{i} low excitation potentialtransitions (which are potentially affected by non-LTE effects) from theinitial line list, and relies on the B-V colour index to determine thetemperature. The third method relies on the detailed fitting of the 6162Å ion{Ca}{i} line to derive the surface gravity, using the samerestricted line list as the second method. Methods 1 and 3 giveconsistent results for the program stars; in particular the comparisonbetween the results obtained shows that the ion{Fe}{i} low-excitationpotential transitions do not appear significantly affected by non-LTEeffects (at least for the subgiant stars), as suggested by the goodagreement of the atmospheric parameters and chemical abundances derived.The second method leads to systematically lower T_eff and log g valueswith respect to the first one, and a similar trend is shown by thechemical abundances (with the exception of the oxygen abundance). Thesedifferences, apart from residual non-LTE effects, may be a consequenceof the colour-T_eff scale used. The α-elements have abundanceratios consistent with the solar values for all the program stars, asexpected for “normal” disk stars. The first method appearsto be the most reliable one, as it is self-consistent, it always leadsto convergent solutions and the results obtained are in good agreementwith previous determinations in the literature.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roche de los Muchachos ofthe Instituto de Astrofisica de Canarias. Table 6 is only available inelectronic form at http://www.edpsciences.org

Identification of a complete sample of northern ROSAT All-Sky Survey X-ray sources. VIII. The late-type stellar component
We present results of an investigation of the X-ray properties, agedistribution, and kinematical characteristics of a high-galacticlatitude sample of late-type field stars selected from the ROSAT All-SkySurvey (RASS). The sample comprises 254 RASS sources with opticalcounterparts of spectral types F to M distributed over six study areaslocated at |b|  20 °, and Dec ≥ -9 °. A detailed studywas carried out for the subsample of ~200 G, K, and M stars. Lithiumabundances were determined for 179 G-M stars. Radial velocities weremeasured for most of the 141 G and K type stars of the sample. Combinedwith proper motions these data were used to study the age distributionand the kinematical properties of the sample. Based on the lithiumabundances half of the G-K stars were found to be younger than theHyades (660 Myr). About 25% are comparable in age to the Pleiades (100Myr). A small subsample of 10 stars is younger than the Pleiades. Theyare therefore most likely pre-main sequence stars. Kinematically the PMSand Pleiades-type stars appear to form a group with space velocitiesclose to the Castor moving group but clearly distinct from the LocalAssociation.Based on observations collected at the German-Spanish AstronomicalCentre, Calar Alto, operated by the Max-Planck-Institut fürAstronomie, Heidelberg, jointly with the Spanish National Commission forAstronomy, and at the European Southern Observatory, La Silla, Chile.Tables A2-A4 are only available in electronic form athttp://www.edpsciences.org

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Some processes of mixing in the atmospheres of cold giants. observed evidence of burning of hydrogen
Some atmosphere parameters (Teff, lgg, [Fe/H], Vt)and the abundances of 21 elements for 19 giants of the disk aredetermined. The gravity is determined through three methods, namely, bycondition of ionization balance for atoms of iron, with the use ofparallaxes (and masses) and the adjustment of wings of the Ca I λ616.217 nm line. The abundances of the carbon, nitrogen and oxygen aredetermined from a molecular synthetic spectrum, the abundances of themagnesium and natrium are deduced in the assumption of NLTE, and theabundance of europium is determined from a sophisticated considerationof hyperfine structure. The study of the evidence of stellar evolutionand mixing in the stellar atmospheres is carried out. The average valuesfor the abundances of elements of the CNO-group are obtained. They pointto the underabundance of the carbon, overabundance of nitrogen and"normal" abundance of the oxygen, which is indicative of the reactionsof the CNO-cycle of hydrogen burning and subsequent transfer of theenriched material on a surface. A small surplus of the natrium and atrend of its abundance with lgg are found. A similar trend is revealedin the case of the nitrogen as well. This, probably, points to reactionsof burning of hydrogen also in NeNa-cycle where additional Ne can beobtained during a number of transformations from nitrogen.

Improved Baade-Wesselink surface brightness relations
Recent, and older accurate, data on (limb-darkened) angular diameters iscompiled for 221 stars, as well as BVRIJK[12][25] magnitudes for thoseobjects, when available. Nine stars (all M-giants or supergiants)showing excess in the [12-25] colour are excluded from the analysis asthis may indicate the presence of dust influencing the optical andnear-infrared colours as well. Based on this large sample,Baade-Wesselink surface brightness (SB) relations are presented fordwarfs, giants, supergiants and dwarfs in the optical and near-infrared.M-giants are found to follow different SB relations from non-M-giants,in particular in V versus V-R. The preferred relation for non-M-giantsis compared to the earlier relation by Fouqué and Gieren (basedon 10 stars) and Nordgren et al. (based on 57 stars). Increasing thesample size does not lead to a lower rms value. It is shown that theresiduals do not correlate with metallicity at a significant level. Thefinally adopted observed angular diameters are compared to thosepredicted by Cohen et al. for 45 stars in common, and there isreasonable overall, and good agreement when θ < 6 mas.Finally, I comment on the common practice in the literature to average,and then fix, the zero-point of the V versus V-K, V versus V-R and Kversus J-K relations, and then rederive the slopes. Such a commonzero-point at zero colour is not expected from model atmospheres for theV-R colour and depends on gravity. Relations derived in this way may bebiased.

Stars of Extragalactic Origin in the Solar Neighborhood
For 77 main-sequence F-G stars in the solar neighborhood with publishediron, magnesium, and europium abundances determined from high-dispersionspectra and with the ages estimated from theoretical isochrones, wecalculated the spatial velocities using Hipparcos data and the Galacticorbital elements. A comparison with the orbital elements of the globularclusters that are known to have been accreted by our Galaxy in the pastreveals stars of extragalactic origin. We show that the abundance ratiosof r- and alpha-elements in all the accreted stars differ sharply fromthose in the stars that are genetically associated with the Galaxy.According to current theoretical models, europium is produced mainly inlow-mass type-II supernovae (SNe II), while magnesium is synthesized inlarge quantities in high-mass SN II progenitors. Since all the oldaccreted stars of our sample exhibit a significant Eu overabundancerelative to Mg, we conclude that the maximum masses of the SN IIprogenitors outside the Galaxy were much lower than those inside it. Onthe other hand, only a small number of young accreted stars exhibit lownegative ratios [Eu/Mg] < 0. This can be explained by the delay ofprimordial star formation and the explosions of high-mass SNe II in arelatively small part of extragalactic space. We provide evidence thatthe interstellar medium was weakly mixed at the early evolutionarystages of the Galaxy formed from a single protogalactic cloud, and thatthe maximum mass of the SN II progenitors increased in it with timesimultaneously with the increase in mean metallicity.

Neutron-Capture Elements in Halo, Thick-Disk, and Thin-Disk Stars: Neodymium
We have derived the LTE neodymium abundances in 60 cool stars withmetallicities [Fe/H] from 0.25 to -1.71 by applying a synthetic-spectrumanalysis to spectroscopic observations of NdII lines with a resolutionof λ/Δλ⋍60 000 and signal-to-noise ratios of100 200. We have improved the atomic parameters of NdII and blendinglines by analyzing the corresponding line pro files in the solarspectrum. Neodymium is overabundant with respect to iron in halo stars,[Nd/Fe]=0.33±0.09, with the [Nd/Fe] ratio decreasingsystematically with metallicity when [Fe/H]>-1. This reflects anonset of efficient iron production in type I supernovae during theformation of the thick disk. The [Nd/Ba] and [Nd/Eu] abundance ratiosbehave differently in halo, thick-disk, and thin-disk stars. Theobserved abundance ratios in halo stars, [Nd/Ba]=0.34±0.08 and[Nd/Eu]=-0.27±0.05, agree within the errors with the ratios ofthe elemental yields for the r-process. These results support theconclusion of other authors based on analyses of other elements that ther-process played the dominant role in the synthesis of heavy elementsduring the formation of the halo. The [Nd/Ba] and [Nd/Eu] ratios forthick-disk stars are almost independent of metallicity([Nd/Ba]=0.28(±0.03)-0.01(±0.04) [Fe/H] and[Nd/Eu]=-0.13(±0.03)+0.05(±0.04) [Fe/H]) but are smallerin absolute value than the corresponding ratios for halo stars,suggesting that the synthesis of s-process nuclei started during theformation of the thick disk. The s-process is estimated to havecontributed ⋍30% of the neodymium produced during this stage ofthe evolution of the Galaxy. The [Nd/Ba] ratio decreases abruptly by0.17 dex in the transition from the thick to the thin disk. Thesystematic decrease of [Nd/Ba] and increase of [Nd/Eu] with increasingmetallicity of thin-disk stars point toward a dominant role of thes-process in the synthesis of heavy elements during this epoch.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Synthetic Lick Indices and Detection of α-Enhanced Stars
Synthetic Lick indices computed with solar scaled abundances and withα-element enhancement are presented and compared with predictionsfrom both theoretical computations (Tripicco & Bell; Thomas,Maraston, & Bender; Barbuy et al.) and empirical fitting functions(de Freitas Pacheco). We propose selected combinations of indicescapable of singling out α-enhanced stars without requiringprevious knowledge of their main atmospheric parameters. By applyingthis approach to the 460 stars in the Worthey et al. catalog, wedetected a list of 82 candidate α-enhanced stars. The confirmationof α-enhancement was obtained by searching the literature forindividual element abundance determinations from high-resolutionspectroscopy for a subsample of 34 stars. Preliminary discussion of theproperties of the detected α-enhanced stars with respect to their[Fe/H] values and kinematics is presented.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Κηφεύς
Right ascension:20h45m17.40s
Declination:+61°50'20.0"
Apparent magnitude:3.43
Distance:14.341 parsecs
Proper motion RA:87.4
Proper motion Dec:817.2
B-T magnitude:4.569
V-T magnitude:3.511

Catalogs and designations:
Proper NamesAl Agemim
Bayerη Cep
Flamsteed3 Cep
HD 1989HD 198149
TYCHO-2 2000TYC 4246-1967-1
USNO-A2.0USNO-A2 1500-07593938
BSC 1991HR 7957
HIPHIP 102422

→ Request more catalogs and designations from VizieR