Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 93372


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

An IRAS survey of main sequence B, A, and F stars
Results are presented of an IRAS survey of main-sequence B, A, and Fstars, based on three primary sources as a data base: theBernacca-Perinotto Catalog of Stellar Rotational Velocities, theMichigan Spectral Catalog, and the Bright Star Catalog. The stars in thedata base are divided into four categories: (1) main-sequence singlestars, (2) main-sequence close binary stars, (3) spectrally peculiarstars such as Am, Ap, Fm, and Fp stars, and (4) subgiants. It is foundthat about 20 percent of main-sequence single stars show an IR colorexcess in at least one of the 12, 25, or 60 micron IRAS bands, while theother three groups do not show any statistically significant percentageof IR color excess stars. It is also found that stars with large (v sini) values are more likely to show color excesses at IRAS wavelengthsthan stars with small (v sin i) values.

The intrinsic colour calibration of Stromgren photometry for F-type stars
Several calibrations of Stromgren uvby-beta photometry with respect tothe intrinsic color (b - y)0 exist for F-type stars. These calibrationsare complementary, since they are valid for different ranges ofheavy-element abundance. A new comprehensive intrinsic color calibrationis presented. It is valid for all F0-G2 stars of luminosity classesIII-V, except possibly the most extreme population II stars. Thecalibration is based on 1231 stars. The rms scatter around thecalibration is 0.009 mag (one star).

Variable Nature of Be Stars
Not Available

Radial velocities of southern stars obtained with the photoelectric scanner CORAVEL. III - 790 late-type bright stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985A&AS...59...15A&db_key=AST

The chemical evolution of the solar neighborhood. I - A bias-free reduction technique and data sample
The possible ways of measuring the age-metallicity relation for thegalactic disk in the neighborhood of the sun are discussed. It is shownthat the use of a field star sample chosen on the basis of effectivetemperature introduces a bias which results in a monotonic increase inthe metal abundance of the disk with time. However, if theage-metallicity relation for the disk can be shown to satisfy certaincriteria, the bias introduced in such a sample can be neglected: thegalactic disk apparently satisfies the criteria. It is concluded that asample analyzed through the use of uvby and H(beta) photometry inconjunction with a self-consistent set of theoretical isochronesprovides the least biased, most accurate estimate of the age-metallicityrelation for the disk.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Τρόπις
Right ascension:10h44m26.50s
Declination:-72°26'38.0"
Apparent magnitude:6.27
Distance:31.959 parsecs
Proper motion RA:-152.3
Proper motion Dec:52.9
B-T magnitude:6.847
V-T magnitude:6.318

Catalogs and designations:
Proper Names
HD 1989HD 93372
TYCHO-2 2000TYC 9219-713-1
USNO-A2.0USNO-A2 0150-07541489
BSC 1991HR 4213
HIPHIP 52535

→ Request more catalogs and designations from VizieR