Principal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Login  
→ Adopt this star  

HD 180656


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Lithium abundances and rotational behavior for bright giant stars
Aims.We study the links possibly existing between the lithium content ofbright giant stars and their rotational velocity. Methods: .Weperformed a spectral analysis of 145 bright giant stars (luminosityclass II) spanning the spectral range from F3 to K5. All these starshave homogeneous rotational velocity measurements available in theliterature. Results: .For all the stars of the sample, we provideconsistent lithium abundances (A_Li), effective temperatures (T_eff),projected rotational velocity (v sin i), mean metallicity ([Fe/H]),stellar mass, and an indication of the stellar multiplicity. The gradualdecrease in lithium abundance with T_eff is confirmed for bright giantstars, and it points to a dilution factor that is at least assignificant as in giant stars. From the F to K spectral types, the A_Lispans at least three orders of magnitude, reflecting the effects ofstellar mass and evolution on dilution. Conclusions: .We find thatthe behavior of A_Li as a function of v sin i in bright giant starspresents the same trend as is observed in giants and subgiants: starswith high A_Li are moderate or fast rotators, while stars with low A_Lishow a wide range of v sin i values.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Catalogue of proper motions in the declination of stars of the Moscow zenith zone.
Not Available

Spectral and Luminosity Classifications and Measurements of the Strength of Cyanogen Absorption for Late-Type Stars from Objective-Prism Spectra.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1961ApJ...134..809Y&db_key=AST

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Dragón
Ascensión Recta:19h14m20.50s
Declinación:+55°56'25.4"
Magnitud Aparente:6.734
Distancia:168.634 parsecs
Movimiento Propio en Ascensión Recta:18.4
Movimiento Propio en Declinación:15.2
B-T magnitude:8.083
V-T magnitude:6.846

Catálogos y designaciones:
Nombres Propios
HD 1989HD 180656
TYCHO-2 2000TYC 3924-228-1
USNO-A2.0USNO-A2 1425-09556121
HIPHIP 94528

→ Solicitar más catálogos y designaciones a VizieR