Principal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Login  
→ Adopt this star  

HD 23277


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Observed Orbital Eccentricities
For 391 spectroscopic and visual binaries with known orbital elementsand having B0-F0 IV or V primaries, we collected the derivedeccentricities. As has been found by others, those binaries with periodsof a few days have been circularized. However, those with periods up toabout 1000 or more days show reduced eccentricities that asymptoticallyapproach a mean value of 0.5 for the longest periods. For those binarieswith periods greater than 1000 days their distribution of eccentricitiesis flat from 0 to nearly 1, indicating that in the formation of binariesthere is no preferential eccentricity. The binaries with intermediateperiods (10-100 days) lack highly eccentric orbits.

Tidal Effects in Binaries of Various Periods
We found in the published literature the rotational velocities for 162B0-B9.5, 152 A0-A5, and 86 A6-F0 stars, all of luminosity classes V orIV, that are in spectroscopic or visual binaries with known orbitalelements. The data show that stars in binaries with periods of less thanabout 4 days have synchronized rotational and orbital motions. Stars inbinaries with periods of more than about 500 days have the samerotational velocities as single stars. However, the primaries inbinaries with periods of between 4 and 500 days have substantiallysmaller rotational velocities than single stars, implying that they havelost one-third to two-thirds of their angular momentum, presumablybecause of tidal interactions. The angular momentum losses increase withdecreasing binary separations or periods and increase with increasingage or decreasing mass.

Quantitative Stellar Spectral Classification. II. Early Type Stars
The method developed by Stock & Stock (1999) for stars of spectraltypes A to K to derive absolute magnitudes and intrinsic colors from theequivalent widths of absorption lines in stellar spectra is extended toB-type stars. Spectra of this type of stars for which the Hipparcoscatalogue gives parallaxes with an error of less than 20% were observedwith the CIDA one-meter reflector equipped with a Richardsonspectrograph with a Thompson 576×384 CCD detector. The dispersionis 1.753 Å/pixel using a 600 lines/mm grating in the first order.In order to cover the spectral range 3850 Å to 5750 Å thegrating had to be used in two different positions, with an overlap inthe region from 4800 Å to 4900 Å . A total of 116 stars wasobserved, but not all with both grating positions. A total of 12measurable absorption lines were identified in the spectra and theirequivalent widths were measured. These were related to the absolutemagnitudes derived from the Hipparcos catalogue and to the intrinsiccolors (deduced from the MK spectral types) using linear and secondorder polynomials and two or three lines as independent variables. Thebest solutions were obtained with polynomials of three lines,reproducing the absolute magnitudes with an average residual of about0.40 magnitudes and the intrinsic colors with an average residual of0.016 magnitudes.

Does Rotation Alone Determine Whether an A-Type Star's Spectrum Is Abnormal or Normal?
As noted by Abt & Morrell, virtually all of the metallic line (Am)and peculiar A (Ap) stars have equatorial rotational velocities lessthan 120 km s-1, and most of the normal A0-F0 main-sequencestars have equatorial rotational velocities greater than 120 kms-1. However, at all spectral types there are some (10%-20%)of the normal stars that have smaller rotational velocities. If thisoverlap is real, then a star's rotational velocity is insufficient toexplain its abnormal or normal spectra. We studied the A5-F0 and A2-A4stars and found in both cases that there are stars classified as``normal'' that have unusually weak Ca II K lines and/or that occur inshort-period binaries. Therefore, the overlap seems to be due toundetected marginal abnormal stars. Among the A0-A1 stars we find thatour inability to distinguish consistently the class IV from the class Vstars can explain the overlap because the class IV stars have lowerrotational velocities than class V stars. We conclude from statisticalarguments that rotation alone can explain the appearance of an A star aseither abnormal or normal.

A Second Catalog of Orbiting Astronomical Observatory 2 Filter Photometry: Ultraviolet Photometry of 614 Stars
Ultraviolet photometry from the Wisconsin Experiment Package on theOrbiting Astronomical Observatory 2 (OAO 2) is presented for 614 stars.Previously unpublished magnitudes from 12 filter bandpasses withwavelengths ranging from 1330 to 4250 Å have been placed on thewhite dwarf model atmosphere absolute flux scale. The fluxes wereconverted to magnitudes using V=0 for F(V)=3.46x10^-9 ergs cm^-2 s^-1Å^-1, or m_lambda=-2.5logF_lambda-21.15. This second catalogeffectively doubles the amount of OAO 2 photometry available in theliterature and includes many objects too bright to be observed withmodern space observatories.

On the HIPPARCOS photometry of chemically peculiar B, A, and F stars
The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. II. Metallicity and pseudo-synchronization.
We reveal sufficient evidences that for Am binaries the metallicitymight depend on their orbital periods, P_orb_, rather than on vsini. Inparticular, δm_1_ index seems to decrease with increasing orbitalperiod up to at least P_orb_=~50d, probably even up to P_orb_=~200d.This gives further support to our "tidal mixing + stabilization"hypothesis formulated in Part I. Moreover, while the most metallic Amstars seem to have rather large periods the slowest rotators are foundto exhibit substantially shorter P_orb_. A questioning eye is thus caston the generally adopted view that Am peculiarity is caused by asuppressed rotationally induced mixing in slowly rotating `single'stars. The observed anticorrelation between rotation and metallicity mayhave also other than the `textbook' explanation, namely being the resultof the correlation between metallicity and orbital period, as themajority of Am binaries are possibly synchronized. We further argue thatthere is a tendency in Am binaries towards pseudo-synchronization up toP_orb_=~35d. This has, however, no serious impact on our conclusionsfrom Part I; on the contrary, they still hold even if this effect istaken into account.

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. I. Orbital periods and rotation.
The paper casts a questioning eye on the unique role of the diffusiveparticle transport mechanism in explaining the Am phenomenon and arguesthat the so-called tidal effects might be of great importance incontrolling diffusion processes. A short period cutoff at =~1.2d as wellas a 180-800d gap were found in the orbital period distribution (OPD) ofAm binaries. The existence of the former can be ascribed to the state ofthe primaries with the almost-filled Roche lobes. The latter couldresult from the combined effects of the diffusion, tidal mixing andstabilization processes. Because the tidal mixing might surpassdiffusion in the binaries with the orbital periods P_orb_ less thanseveral hundred days and might thus sustain the He convection zone,which would otherwise disappear, no Am stars should lie below thisboundary. The fact that they are nevertheless seen there implies theexistence of some stabilization mechanism (as, e.g., that recentlyproposed by Tassoul & Tassoul 1992) for the binaries with orbitalperiods less than 180d. Further evidence is given to the fact that theOPD for the Am and the normal binaries with an A4-F1 primary arecomplementary to each other, from which it stems that Am stars are closeto the main sequence. There are, however, indications that they haveslightly larger radii (2.1-3 Rsun_) than expected for theirspectral type. The generally accepted rotational velocity cutoff at=~100km/s is shown to be of little value when applied on Am binaries ashere it is not a single quantity but, in fact, a function of P_orb_whose shape is strikingly similar to that of the curves of constantmetallicity as ascertained from observations. This also leads to thewell known overlap in rotational velocities of the normal and Am starsfor 402.5d.We have exploited this empirical cutoff function to calibrate thecorresponding turbulent diffusion coefficient associated with tidalmixing, having found out that the computed form of the lines of constantturbulence fits qualitatively the empirical shape of the curves ofconstant metallicity. As for larger orbital periods(20d55km/s found by Burkhart(1979) would then be nothing but a manifestation of insufficientlypopulated corresponding area of larger P_orb_.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A catalogue of Fe/H determinations - 1991 edition
A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.

Fourth preliminary catalogue of stars, right ascension observed with photoelectric transit instrument (PPCP4).
Not Available

Stellar integrated fluxes in the wavelength range 380 NM - 900 NM derived from Johnson 13-colour photometry
Petford et al. (1988) have reported measured integrated fluxes for 216stars with a wide spread of spectral type and luminosity, and mentionedthat a cubic-spline integration over the relevant Johnson 13-colormagnitudes, converted to fluxes using Johnson's calibration, is inexcellent agreement with those measurements. In this paper a list of thefluxes derived in this way, corrected for a small dependence on B-V, isgiven for all the 1215 stars in Johnson's 1975 catalog with completeentries.

E. W. Fick Observatory stellar radial velocity measurements. I - 1976-1984
Stellar radial velocity observations made with the large vacuumhigh-dispersion photoelectric radial velocity spectrometer at FickObservatory are reported. This includes nearly 2000 late-type starsobserved during 585 nights. Gradual modifications to this instrumentover its first eight years of operation have reduced the observationalerror for high-quality dip observations to + or - 0.8 km/s.

Metallicism among A and F giant stars
132 stars considered as A and F giants have been studied for theirproperties in the Geneva photometric system. It is shown that thissystem to derive the temperature, absolute magnitude and Fe/H value forstars in this part of the HR diagram. 36 percent of the stars of oursample exhibit an enhanced value Delta m2 that can be interpreted interms of Fe/H. The red limit of stars having an enhanced Fe/H value is0.225 in B2-V1 or 6500 K in Teff. This corresponds to the limit definedby Vauclair and Vauclair (1982) where the diffusion timescale is equalto the stellar lifetime and permits the assumption that the diffusion isthe process responsible for the metallicism observed in the A and Fgiants.

Improved study of metallic-line binaries
For the sake of completeness, a new study has been made of the frequencyof binaries among classical metallic-line (Am) stars and of thecharacteristics of these systems. For an initial sample of 60 Am stars,about 20 coude spectra and radial velocities were obtained each. Whencombined with excellent published orbital elements for some systems, thenew material yields 16 SB2s, 20 SB1s, and 20 visual and occultationcompanions not already counted as spectroscopic companions. Extensivedetails are given about the observations, radial velocities, and binaryorbits. Evolutionary expansion during their main sequence lifetime isseen as an additional mechanism (besides tidal braking) acting in closebinaries to lower rotational velocities below 100 km/s.

A catalogue of Fe/H determinations, 1984 edition
The present version of the Cayrel de Strobel et al. (1981) catalog ofFe/H abundance ratio determinations contains 1921 values for 1035 stars,which represents an augmentation over the previous publication of 48 and47 percent, respectively. In addition, the literature search conductedis complete up to December, 1983. Stellar metal abundance, effectivetemperature, spectroscopic gravity, spectral type, and photometricindices are covered.

The period distribution of unevolved close binary systems
Period distributions have been examined for various spectral types ofabout 600 (eclipsing and spectroscopic) close binaries, which are likelyto be substantially unevolved. The comparison with the previouscorresponding analyses of extensive (but heterogeneous) binary samplesallows a clarification of the extent of the evolutionary andobservational selection effects. Remarkably, this analysis reveals agreat deficiency of short period binaries (with periods corresponding tocase A mass transfer) in the whole spectral range. For the late spectraltypes, this result may be connected with postformation angular momentumloss caused by stellar wind magnetic braking; at least for the late Band A spectral range, a ready interpretation of this finding is thatclose binaries of corresponding periods and spectral types are rarelyformed.

Synchronization in early-type spectroscopic binary stars
The rotational properties of a large sample of noneclipsing double-linedspectroscopic binaries are discussed in terms of synchronization ofaxial and orbital rotation. The data covered the spectral types OB andA04, i.e., those with full radiative envelopes. Nearly 80 systems wereinvestigated, and the periods and orbital velocities are provided. Ahigh correlation was found between the fractional radius and theoccurrence of synchronicity and pseudosynchronicity. Deviations fromsynchronous rotation were most apparent at fractional radii of 0.05 andbelow. Current theories of the synchronization time scales are noted tobe inadequate for describing the small fractional radii-lack ofsynchronism observed.

UV photometric data on standard A, F and AM stars observed by S2/68
Data derived from the stellar UV fluxes of the S2/68 experiment andanalyzed and interpreted by Van't Veer et al. (1980) are presented.There are two tables of photometric data. One lists all standard stars,without exception, belonging to the intersection of the following threecatalogs: (1) the Thompson et al. (1978) catalog of S2/68 fluxes; (2)the PMR catalog (Philip et al., 1976), which is an analysis of theHauck-Mermilliod catalog (1975) of homogeneous four color data; and (3)the Crawford and Barnes (1970) list of standard stars for uvbyphotometry. The other table lists all the Am stars, without exception,belonging to the intersection of the following three catalogs: (1)Thompson et al. (1978); (2) PMR (1976); and (3) the Hauck (1973) catalogof the Am stars.

List of Estimated Angular Separations of Spectroscopic Binaries
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981A&AS...44...47H&db_key=AST

The absolute magnitude of the AM stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981A&A....93..155G&db_key=AST

Seventh catalogue of the orbital elements of spectroscopic binary systems.
Not Available

Metallicism and pulsation - The marginal metallic line stars
Evidence is presented that HR 4594 and HR 8210 are pulsating marginal Amstars. It is suggested that (1) classical Am stars do not pulsate, (2)evolved Am stars may pulsate, and (3) marginal Am stars may pulsate. Itis further suggested that, within the Am domain, temperature, age,rotation, and pulsation are sufficient to determine whether a star willbe Am, marginal Am, or spectrally normal.

Bright metallic-line and pulsating A stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88..402E&db_key=AST

Synchronization in binaries and age.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976ApJ...203..680L&db_key=AST

Rotational velocities of marginal metallic-line stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975ApJ...195..405A&db_key=AST

Absolute luminosity calibration of Stroemgren's 'intermediate group'
A relation defining the luminosity index for Stroemgren's (1966)intermediate group (A0 to A3 stars) in terms of absolute magnitude iscalibrated using a method based on the principle of maximum likelihood.This relation is also calibrated for the case when the 'a' index iscorrected for reddening. For both relations, calculations are made ofthe magnitude dispersion, the mean velocity components and correspondingdispersion, and the precision of each parameter. The results are shownto be in fairly good agreement with Stroemgren's (1966) values, and arelation incorporating the corrected 'a' index is proposed formain-sequence stars. The absolute magnitudes obtained with a relation ofthe present type are compared with those derived from trigonometricparallaxes and with those obtained by Eggen (1972).

Multicolor photometry of metallic-line stars. III. A photometric catalogue
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974RMxAA...1..175M&db_key=AST

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Jirafa
Ascensión Recta:03h49m13.80s
Declinación:+70°52'16.0"
Magnitud Aparente:5.44
Distancia:99.8 parsecs
Movimiento Propio en Ascensión Recta:19.7
Movimiento Propio en Declinación:-64.9
B-T magnitude:5.521
V-T magnitude:5.405

Catálogos y designaciones:
Nombres Propios
HD 1989HD 23277
TYCHO-2 2000TYC 4331-1936-1
USNO-A2.0USNO-A2 1575-01817159
BSC 1991HR 1138
HIPHIP 17854

→ Solicitar más catálogos y designaciones a VizieR