Principal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Login  
→ Adopt this star  

HD 34445


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties
Habitable planets are likely to be broadly Earth-like in composition,mass, and size. Masses are likely to be within a factor of a few of theEarth's mass. Currently, we do not have sufficiently sensitivetechniques to detect Earth-mass planets, except in rare circumstances.It is thus necessary to model the known exoplanetary systems. Inparticular, we need to establish whether Earth-mass planets could bepresent in the classical habitable zone (HZ) or whether the giantplanets that we know to be present would have gravitationally ejectedEarth-mass planets or prevented their formation. We have answered thisquestion by applying computer models to the 152 exoplanetary systemsknown by 2006 April 18 that are sufficiently well characterized for ouranalysis. For systems in which there is a giant planet, inside the HZ,which must have arrived there by migration, there are two cases: (1)where the migration of the giant planet across the HZ has not ruled outthe existence of Earth-mass planets in the HZ; and (2) where themigration has ruled out existence. For each case, we have determined theproportion of the systems that could contain habitable Earth-massplanets today, and the proportion for which this has been the case forat least the past 1000 Myr (excluding any early heavy bombardment). Forcase 1 we get 60% and 50%, respectively, and for case 2 we get 7% and7%, respectively.

Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.

Spectroscopic parameters for a sample of metal-rich solar-type stars
Aims.To date, metallicity is the only parameter of a star that appearsto clearly correlate with the presence of planets and their properties.To check for new correlations between stars and the existence of anorbiting planet, we determine accurate stellar parameters for severalmetal-rich solar-type stars. The purpose is to fill the gap of thecomparison sample presented in previous works in the high metal-contentregime. Methods: .The stellar parameters were determined using anLTE analysis based on equivalent widths (EW) of iron lines and byimposing excitation and ionization equilibrium. We also present a firststep in determining these stellar parameters in an automatic manner byusing the code DAOSPEC for the EW determination. Results:.Accurate stellar parameters and metallicities are obtained for oursample composed of 64 high metal-content stars not known to harbor anyplanet. This sample will in the future give us the possibility of betterexploring the existence of differences in the chemical abundancesbetween planet-host stars and stars without known planets in themetal-rich domain. We also report stellar parameters for some recentlydiscovered planet-host stars. Finally, we present an empiricalcalibration for DAOSPEC based on the comparison between its EWmeasurements and the standard "hand made" measurements for the FEROSsample presented in this paper.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Kinematics, ages and metallicities for F- and G-type stars in the solar neighbourhood
A new metallicity distribution and an age-metallicity relation arepresented for 437 nearby F and G turn-off and sub-giant stars selectedfrom radial velocity data of Nidever et al. Photometric metallicitiesare derived from uvby- Hβ photometry, and the stellar ages from theisochrones of Bergbusch & VandenBerg as transformed to uvbyphotometry using the methods of Clem et al.The X (stellar population) criterion of Schuster et al., which combinesboth kinematic and metallicity information, provides 22 thick-discstars. σW= 32 +/- 5 km s-1,= 154 +/- 6 km s-1 and<[M/H]>=-0.55 +/- 0.03 dex for these thick-disc stars, which is inagreement with values from previous studies of the thick disc.α-element abundances which are available for some of thesethick-disc stars show the typical α-element signatures of thethick disc, supporting the classification procedure based on the Xcriterion.Both the scatter in metallicity at a given age and the presence of old,metal-rich stars in the age-metallicity relation make it difficult todecide whether or not an age-metallicity relation exists for the olderthin-disc stars. For ages greater than 3 Gyr, our results agree with theother recent studies that there is almost no correlation between age andmetallicity, Δ([M/Fe])/Δ(age) =-0.01 +/- 0.005 dexGyr-1. For the 22 thick-disc stars there is a range in agesof 7-8 Gyr, but again almost no correlation between age and metallicity.For the subset of main-sequence stars with extra-solar planets, theage-metallicity relation is very similar to that of the total sample,very flat, the main difference being that these stars are mostlymetal-rich, [M/H]>~-0.2 dex. However, two of these stars have[M/H]~-0.6 dex and have been classified as thick-disc stars. As for thetotal sample, the range in ages for these stars with extra-solarplanetary systems is considerable with a nearly uniform distributionover 3 <~ age <~ 13 Gyr.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

On the ages of exoplanet host stars
We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Observations of Star-Forming Regions with the Midcourse Space Experiment
We have imaged seven nearby star-forming regions, the Rosette Nebula,the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5,with the Spatial Infrared Imaging Telescope on the Midcourse SpaceExperiment (MSX) satellite at 18" resolution at 8.3, 12.1, 14.7, and21.3 μm. The large angular scale of the regions imaged (~7.2-50deg2) makes these data unique in terms of the combination ofsize and resolution. In addition to the star-forming regions, twocirrus-free fields (MSXBG 160 and MSXBG 161) and a field near the southGalactic pole (MSXBG 239) were also imaged. Point sources have beenextracted from each region, resulting in the identification over 500 newsources (i.e., no identified counterparts at other wavelengths), as wellas over 1300 with prior identifications. The extended emission from thestar-forming regions is described, and prominent structures areidentified, particularly in W3 and Orion. The Rosette Nebula isdiscussed in detail. The bulk of the mid-infrared emission is consistentwith that of photon-dominated regions, including the elephant trunkcomplex. The central clump, however, and a line of site toward thenorthern edge of the cavity show significantly redder colors than therest of the Rosette complex.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry
Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5

Preliminary UVBY calibrations for G and K type dwarf stars
Four-color uvby photometry for several hundred late-type dwarf stars oftypes G, K and M is discussed. Mean values of photometric indices aregiven for MK spectral types between F8/G0V and M2V. Preliminary standardrelations between the four-color indices are derived. Based onparallaxes and results from high-dispersion spectroscopic analyses,calibrations of the observed indices in terms of Mv, log Te and Fe/Hhave been derived. The means errors are 0.29 mag, 0.009 dex, and 0.17dex, respectively. The calibrations are valid for class-V stars of allpopulations between G0 and M2. If extreme population-II dwarfs areexcluded, the mean error of the abundance calibration decreases to 0.13dex. Calibrations in terms of log g have been attempted,, but the lowaccuracy of the spectroscopic g determinations does not inspireconfidence in the results. The possible contribution of a'fourth-parameter' variation to the mean errors of the calibrations isbriefly discussed. This fourth parameter could be the intrinsic heliumabundance of the stars.

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Orión
Ascensión Recta:05h17m40.98s
Declinación:+07°21'12.0"
Magnitud Aparente:7.337
Distancia:45.005 parsecs
Movimiento Propio en Ascensión Recta:-1.9
Movimiento Propio en Declinación:-148.5
B-T magnitude:8.11
V-T magnitude:7.401

Catálogos y designaciones:
Nombres Propios
HD 1989HD 34445
TYCHO-2 2000TYC 112-182-1
USNO-A2.0USNO-A2 0900-01509391
HIPHIP 24681

→ Solicitar más catálogos y designaciones a VizieR