Principal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Login  
→ Adopt this star  

HD 82610 (S Antliae)


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Luminosity function of contact binaries based on the All Sky Automated Survey (ASAS)
The luminosity function for contact binary stars of the W UMa type isevaluated on the basis of the All Sky Automated Survey (ASAS)photometric project covering all stars south of δ=+ 28° withina magnitude range 8 < V < 13. Lack of colour indices enforced alimitation to 3374 systems with P < 0.562 d (i.e. 73 per cent of allsystems with P < 1 d) where a simplified MV(logP)calibration could be used. The spatial density relative to themain-sequence FGK stars of 0.2 per cent, as established previously fromthe Hipparcos sample to V= 7.5, is confirmed. While the numbers ofcontact binaries in the ASAS are large and thus the statisticaluncertainties small, derivation of the luminosity function required acorrection for missed systems with small amplitudes and with orbitalperiods longer than 0.562 d; the correction, by a factor of 3, carriesan uncertainty of about 30 per cent.

Contact Binaries with Additional Components. I. The Extant Data
We have attempted to establish observational evidence for the presenceof distant companions that may have acquired and/or absorbed angularmomentum during the evolution of multiple systems, thus facilitating orenabling the formation of contact binaries. In this preliminaryinvestigation we use several techniques (some of themdistance-independent) and mostly disregard the detection biases ofindividual techniques in an attempt to establish a lower limit to thefrequency of triple systems. While the whole sample of 151 contactbinary stars brighter than Vmax=10 mag gives a firm lowerlimit of 42%+/-5%, the corresponding number for the much better observednorthern-sky subsample is 59%+/-8%. These estimates indicate that mostcontact binary stars exist in multiple systems.

V781 Tauri: a W Ursae Majoris binary with decreasing period
We analyze light curves of the W UMa type eclipsing binary V781 Taurifrom three epochs and radial velocity curves from two epochssimultaneously, including previously unpublished B and V data. Theoverall time span is from 1983 to 2000 and the solution is donecoherently in time (not phase) with five light curves and two sets ofprimary and secondary velocity curves. Minor systematic differencesamong the individual light curves are not large enough to undermine thevalue of a coherent solution that represents 18 years of observations.Times of minima confirm a period of 0.34491d and the general solutionfinds a small period change, dP/P, of(5.08±{04})×10-11 that represents recentbehavior. The eclipse timings cover the last half-century and find dP/Pabout four times smaller, corresponding to a period change time scale,P/(dP/dt) of about 6 million years. The system is over-contact with afilling factor of 0.205. The solution produces a temperature differenceof about 260 K between the components, an inclination of 65.9dg, and amass ratio M_2/M_1=2.47. Separate solutions of the several light curvesthat incorporate dark spots find parameters that differ little fromcurve to curve. Absolute masses, luminosities, radii and the distanceare derived, with luminosities and distance based on star 1 being oftype G0V. The orbital angular momentum is compared with those of other WUMa type binaries and is normal. The star to star mass flow that one caninfer from dP/dt is opposite to that expected from TRO (ThermalRelaxation Oscillator) theory, but pertains to a time span that is veryshort compared to the time scale of TRO oscillations.

Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation
We study the kinematics of 129 W UMa binaries and we discuss itsimplications on the contact binary evolution. The sample is found to beheterogeneous in the velocity space. That is, kinematically younger andolder contact binaries exist in the sample. A kinematically young (0.5Gyr) subsample (moving group) is formed by selecting the systems thatsatisfy the kinematical criteria of moving groups. After removing thepossible moving group members and the systems that are known to bemembers of open clusters, the rest of the sample is called the fieldcontact binary (FCB) group. The FCB group is further divided into fourgroups according to the orbital period ranges. Then, a correlation isfound in the sense that shorter-period less-massive systems have largervelocity dispersions than the longer-period more-massive systems.Dispersions in the velocity space indicate a 5.47-Gyr kinematical agefor the FCB group. Compared with the field chromospherically activebinaries (CABs), presumably detached binary progenitors of the contactsystems, the FCB group appears to be 1.61 Gyr older. Assuming anequilibrium in the formation and destruction of CAB and W UMa systems inthe Galaxy, this age difference is treated as an empirically deducedlifetime of the contact stage. Because the kinematical ages (3.21, 3.51,7.14 and 8.89 Gyr) of the four subgroups of the FCB group are muchlonger than the 1.61-Gyr lifetime of the contact stage, the pre-contactstages of the FCB group must dominantly be producing the largedispersions. The kinematically young (0.5 Gyr) moving group covers thesame total mass, period and spectral ranges as the FCB group. However,the very young age of this group does not leave enough room forpre-contact stages, and thus it is most likely that these systems wereformed in the beginning of the main sequence or during thepre-main-sequence contraction phase, either by a fission process or mostprobably by fast spiralling in of two components in a common envelope.

Observed Orbital Eccentricities
For 391 spectroscopic and visual binaries with known orbital elementsand having B0-F0 IV or V primaries, we collected the derivedeccentricities. As has been found by others, those binaries with periodsof a few days have been circularized. However, those with periods up toabout 1000 or more days show reduced eccentricities that asymptoticallyapproach a mean value of 0.5 for the longest periods. For those binarieswith periods greater than 1000 days their distribution of eccentricitiesis flat from 0 to nearly 1, indicating that in the formation of binariesthere is no preferential eccentricity. The binaries with intermediateperiods (10-100 days) lack highly eccentric orbits.

Tidal Effects in Binaries of Various Periods
We found in the published literature the rotational velocities for 162B0-B9.5, 152 A0-A5, and 86 A6-F0 stars, all of luminosity classes V orIV, that are in spectroscopic or visual binaries with known orbitalelements. The data show that stars in binaries with periods of less thanabout 4 days have synchronized rotational and orbital motions. Stars inbinaries with periods of more than about 500 days have the samerotational velocities as single stars. However, the primaries inbinaries with periods of between 4 and 500 days have substantiallysmaller rotational velocities than single stars, implying that they havelost one-third to two-thirds of their angular momentum, presumablybecause of tidal interactions. The angular momentum losses increase withdecreasing binary separations or periods and increase with increasingage or decreasing mass.

On the properties of contact binary stars
We have compiled a catalogue of light curve solutions of contact binarystars. It contains the results of 159 light curve solutions. Theproperties of contact binary stars were studied using the cataloguedata. As is well known since Lucy's (\cite{Lucy68a},b) and Mochnacki's(\cite{Mochnacki81}) studies, primary components transfer their ownenergy to the secondary star via the common envelope around the twostars. This transfer was parameterized by a transfer parameter (ratio ofthe observed and intrinsic luminosities of the primary star). We provethat this transfer parameter is a simple function of the mass andluminosity ratios. We introduced a new type of contact binary stars: Hsubtype systems which have a large mass ratio (q>0.72). These systemsshow behaviour in the luminosity ratio- transfer parameter diagram thatis very different from that of other systems and according to ourresults the energy transfer rate is less efficient in them than in othertypes of contact binary stars. We also show that different types ofcontact binaries have well defined locations on the mass ratio -luminosity ratio diagram. Several contact binary systems do not followLucy's relation (L2/L1 =(M2/M1)0.92). No strict mass ratio -luminosity ratio relation of contact binary stars exists.Tables 2 and 3 are available in electronic form athttp://www.edpsciences.org

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Catalogue of the field contact binary stars
A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.

The 7.5 Magnitude Limit Sample of Bright Short-Period Binary Stars. I. How Many Contact Binaries Are There?
A sample of bright contact binary stars (W UMa type or EW, and related:with β Lyr light curves, EB, and ellipsoidal, ELL-in effect, allbut the detached, EA) to the limit of Vmax=7.5 mag is deemedto include all discoverable short-period (P<1 day) binaries withphotometric variation larger than about 0.05 mag. Of the 32 systems inthe final sample, 11 systems have been discovered by the Hipparcossatellite. The combined spatial density is evaluated at(1.02+/-0.24)×10-5 pc-3. The relativefrequency of occurrence (RFO), defined in relation to the main-sequencestars, depends on the luminosity. An assumption of RFO~=1/500 forMV>+1.5 is consistent with the data, although the numberstatistics is poor with the resulting uncertainty in the spatial densityand the RFO by a factor of about 2. The RFO rapidly decreases forbrighter binaries to a level of 1/5000 for MV<+1.5 and to1/30,000 for MV<+0.5. The high RFO of 1/130, previouslydetermined from the deep OGLE-I sample of disk population W UMa typesystems toward Baade's window, is inconsistent with and unconfirmed bythe new results. Possible reasons for the large discrepancy arediscussed. They include several observational effects but also apossibility of a genuine increase in the contact-binary density in thecentral parts of the Galaxy. Based on data from the Hipparcos satellitemission and from the David Dunlap Observatory, University of Toronto.

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

Orbital period changes of contact binary systems: direct evidence for thermal relaxation oscillation theory
Orbital period changes of ten contact binary systems (S Ant, ɛCrA, EF Dra, UZ Leo, XZ Leo, TY Men, V566 Oph, TY Pup, RZ Tau and AGVir) are studied based on the analysis of their O-C curves. It isdiscovered that the periods of the six systems, S Ant, ɛ CrA, EFDra, XZ Leo, TY Men and TY Pup, show secular increases. For UZ Leo, itssecular period increase rate is revised. For the three systems, V566Oph, RZ Tau and AG Vir, weak evidence is presented that a periodicoscillation (with periods of 20.4, 28.5 and 40.9yr respectively) issuperimposed on a secular period increase. The cyclic period changes canbe explained by the presence of an unseen third body in the threesystems. All the sample stars studied are contact binaries withM1>=1.35Msolar. Furthermore, orbital periodchanges of 27 hot contact binaries have been checked. It is found that,apart from AW UMa with the lowest mass ratio (q=0.072), none shows anorbital period decrease. The relatively weak magnetic activity in thehotter contact binaries means little angular momentum loss (AML) fromthe systems via magnetic stellar winds. The period increases of these WUMa binaries can be explained by mass transfer from the secondary to theprimary components, which is in agreement with the prediction of thethermal relaxation oscillation (TRO) models. This suggests that theevolution of a hotter W UMa star is mainly controlled by TRO. On theother hand, for a cooler W UMa star(M1<=1.35Msolar), its evolution may be TRO plusAML, which coincides with the recent results of Qian.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

A CCD Photometric Study of the Contact Binary V396 Monocerotis
Complete BV light curves of the W Ursae Majoris binary V396 Mon arepresented. The present CCD photometric observations reveal that thelight curves of the system are obviously asymmetric, with the primarymaximum brighter than the secondary maximum (the ``O'Connell effect'').The light curves are analyzed by means of the latest version of theWilson-Devinney code. The results show that V396 Mon is a W-subtype WUMa contact binary with a mass ratio of 0.402. The asymmetry of thelight curves is explained by a cool spot on the secondary component. Thenature of the overluminosity of the secondary of a W UMa-type system isanalyzed. It is shown that the overluminosity of the secondary isclearly related to the mass of the primary and that, for a W UMa system,the higher the mass of the primary, the greater the overluminosity ofthe secondary. In addition, the overluminosity of the secondary is alsorelated to its own density: the lower the density of the secondary, thegreater its overluminosity.

ROSAT all-sky survey of W Ursae Majoris stars and the problem of supersaturation
From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for 57 WUMa type contact systems. In our sample we detected three stars whichare the shortest period main sequence binaries ever found as X-raysources. For stars with (B-V)_0 < 0.6 the normalized X-ray fluxdecreases with a decreasing color index but for (B-V)_0 > 0.6 aplateau is reached, similar to the saturation level observed for single,rapidly rotating stars. The X-ray flux of W UMa stars is about 4-5 timesweaker than that of the fastest rotating single stars. Because earlytype, low activity variables have longer periods, an apparentperiod-activity relation is seen among our stars, while cool stars with(B-V)_0 > 0.6 and rotation periods between 0.23 and 0.45 days do notshow any such relation. The lower X-ray emission of the single, ultrafast rotators (UFRs) and W UMa stars is interpreted as the result of adecreased coronal filling factor. The physical mechanisms responsiblefor the decreased surface coverage differs for UFRs and W UMa systems.For UFRs we propose strong polar updrafts within a convection zone,driven by nonuniform heating from below. The updrafts should beaccompanied by large scale poleward flows near the bottom of theconvective layer and equatorward flows in the surface layers. The flowsdrag dynamo generated fields toward the poles and create a field-freeequatorial region with a width depending on the stellar rotation rate.For W UMa stars we propose that a large scale horizontal flow embracingboth stars will prevent the magnetic field from producing long-livedstructures filled with hot X-ray emitting plasma. The decreased activityof the fastest rotating UFRs increases the angular momentum loss timescale of stars in a supersaturated state. Thus the existence of a periodcutoff and a limiting mass of W UMa stars can be naturally explained.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Does Rotation Alone Determine Whether an A-Type Star's Spectrum Is Abnormal or Normal?
As noted by Abt & Morrell, virtually all of the metallic line (Am)and peculiar A (Ap) stars have equatorial rotational velocities lessthan 120 km s-1, and most of the normal A0-F0 main-sequencestars have equatorial rotational velocities greater than 120 kms-1. However, at all spectral types there are some (10%-20%)of the normal stars that have smaller rotational velocities. If thisoverlap is real, then a star's rotational velocity is insufficient toexplain its abnormal or normal spectra. We studied the A5-F0 and A2-A4stars and found in both cases that there are stars classified as``normal'' that have unusually weak Ca II K lines and/or that occur inshort-period binaries. Therefore, the overlap seems to be due toundetected marginal abnormal stars. Among the A0-A1 stars we find thatour inability to distinguish consistently the class IV from the class Vstars can explain the overlap because the class IV stars have lowerrotational velocities than class V stars. We conclude from statisticalarguments that rotation alone can explain the appearance of an A star aseither abnormal or normal.

Contact Binaries of the Galactic Disk: Comparison of the Baade's Window and Open Cluster Samples
The paper attempts to integrate the available data for contact binariesof the disk population in a deep Galactic field and in old openclusters. The two basic data sets consist of 98 systems in thevolume-limited 3 kpc subsample of contact binaries detected by the OGLEmicrolensing project toward Baade's window (BW_3) and of 63 members of11 old open clusters (CL). Supplementary data on the intrinsicallybright, but spatially rare, long-period binaries are provided by 238systems in the BW sample to the distance of 5 kpc (BW_5). The basic BW_3sample and the CL sample are remarkably similar in the period, color,luminosity, and variability-amplitude distributions, in spite of verydifferent selections, for BW_3-as a volume-limited subsample of allcontact systems discovered by the OGLE project, and for CL-as acollection of contact systems discovered in open clusters that had beensubject to searches differing in limiting magnitudes, cluster areacoverage, and photometric errors. The contact systems are found in thecolor interval 0.3 < (B-V)_0 < 1.2, where the turn-off points(TOP) of the considered clusters are located; however, they are notconcentrated at the respective TOP locations, but, once the TOP happensto fall in the above color interval, they can appear anywhere within it.The luminosity function for the BW sample appears to be very similar inshape to that for the solar neighborhood main-sequence (MS) stars whencorrections for the Galactic disk structure are applied, which implies aflat apparent frequency-of-occurrence distribution. In the accessibleinterval 2.5 < M_V < 7.5, the frequency of contact binariesrelative to MS stars equals about 1/130 for the exponential disk lengthscale h_R = 2.5 kpc and about 1/100 for h_R = 3.5 kpc. The highfrequency cannot continue for M_V < 2.5 as the predicted numbers ofbright systems would then become inconsistent with the numbers of knownsystems to V_lim = 7.5 in the sky sample. The previous estimate of thefrequency from the BW sample of 1/250-1/300 did not correctly relate thenumbers of the contact binaries to the numbers of MS stars. Themagnitude limit of the OGLE survey limits the accuracy of the currentluminosity function determination for M_V > 5.5, but the availabledata are consistent with a continuation of the high apparent frequencybeyond M_V = 7.5, i.e., past the current short-period, low-luminosityend, delineated by the shortest period field system CC Com at M_V = 6.7.The current data indicate that the sky-field sample of contact binariesstarts showing discovery-selection effects at a level as high as V ~=10-11.

On the HIPPARCOS photometry of chemically peculiar B, A, and F stars
The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Absolute Magnitude Calibration for the W UMa-Type Systems Based on HIPPARCOS Data
Hipparcos parallax data for 40 contact binary stars of the W UMa-type(with epsilon M_V < 0.5) are used to derive a new, (B-V)-basedabsolute-magnitude calibration of the form M_V = M_V(log P,B-V). Thecalibration covers the ranges 0.26 < (B-V)_0 < 1.14, 0.24 < P< 1.15 day, and 1.4 < M_V < 6.1; it is based on a solutionweighted by relative errors in the parallaxes (2.7% to 24%). Previouscalibrations have not been based on such a wide period and color space,and while they have been able to predict M_V with sufficient accuracyfor systems closely following the well-known period-color relation, thenew calibration should be able to give also good predictions for moreexotic ``outlying'' contact binary systems. The main limitations of thiscalibration are the inadequate quality of the ground-based photometricdata, and the restriction to the (B-V) index, which is more sensitive tometallicity effects than the (V-I) index; metallicities are, however,basically unknown for the local W UMa-type systems. (SECTION: Stars)

Photometric Analyses of the Short-Period Contact Binaries HY Pavonis, AW Virginis, and BP Velorum
We present BV light curve synthetic analyses of three short periodcontact (W UMa) binaries: HY Pavonis (P ~0.35 days), AW Virginis (P~0.35 days), and BP Velorum (P ~0.26 days). Different possibleconfigurations for a wide range of the mass ratio were explored in eachcase making use of the Wilson-Divinney code. The photometric parametersof the systems were determined from the synthetic light curve solutionsthat best fit the observations. AW Vir has two components of verysimilar temperatures and therefore the subtype (A or W) remainsundetermined. HY Pav and BP Vel are best modeled by W-typeconfigurations and the asymmetries in the light curves are reproduced byintroducing cool spots on the more massive secondary components. Evenwhen BP Vel lies in the region of the open cluster Cr 173, its distancemodulus, in principle, rules it out as a cluster member. (SECTION:Stars)

A Catalogue of Correlations Between Eclipsing Binaries and Other Categories of Double Stars
Among the 9110 stars in The Bright Star Catalogue, there are 225eclipsing or ellipsoidal variables. A search has been made for these incatalogues of spectroscopic binaries, visual double or multiple stars,speckle interferometry, occulation binaries, and galatic clusters. Themajority of the photometric binaries are also members of groups ofhigher multiplicity. The variables are in systems ranging from one to 91stars, five on the average. 199 are either spectroscopic binaries (SB)or stars with variable radial velocity, with orbital periods known for160. Photometric periods are lacking for 48 while SB periods areavailable for 23 of these. Observers with photoelectric equipment areencouraged to plan observations to test if the SB periods are consistentwith photometric data. Observers are likewise encouraged to examinethose stars for which the photometric and SB periods appear to beinconsistent. Parallaxes are available for 86 of the stars, 41 of themindicating distances nearer than 50 parsecs.

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. I. Orbital periods and rotation.
The paper casts a questioning eye on the unique role of the diffusiveparticle transport mechanism in explaining the Am phenomenon and arguesthat the so-called tidal effects might be of great importance incontrolling diffusion processes. A short period cutoff at =~1.2d as wellas a 180-800d gap were found in the orbital period distribution (OPD) ofAm binaries. The existence of the former can be ascribed to the state ofthe primaries with the almost-filled Roche lobes. The latter couldresult from the combined effects of the diffusion, tidal mixing andstabilization processes. Because the tidal mixing might surpassdiffusion in the binaries with the orbital periods P_orb_ less thanseveral hundred days and might thus sustain the He convection zone,which would otherwise disappear, no Am stars should lie below thisboundary. The fact that they are nevertheless seen there implies theexistence of some stabilization mechanism (as, e.g., that recentlyproposed by Tassoul & Tassoul 1992) for the binaries with orbitalperiods less than 180d. Further evidence is given to the fact that theOPD for the Am and the normal binaries with an A4-F1 primary arecomplementary to each other, from which it stems that Am stars are closeto the main sequence. There are, however, indications that they haveslightly larger radii (2.1-3 Rsun_) than expected for theirspectral type. The generally accepted rotational velocity cutoff at=~100km/s is shown to be of little value when applied on Am binaries ashere it is not a single quantity but, in fact, a function of P_orb_whose shape is strikingly similar to that of the curves of constantmetallicity as ascertained from observations. This also leads to thewell known overlap in rotational velocities of the normal and Am starsfor 402.5d.We have exploited this empirical cutoff function to calibrate thecorresponding turbulent diffusion coefficient associated with tidalmixing, having found out that the computed form of the lines of constantturbulence fits qualitatively the empirical shape of the curves ofconstant metallicity. As for larger orbital periods(20d55km/s found by Burkhart(1979) would then be nothing but a manifestation of insufficientlypopulated corresponding area of larger P_orb_.

The properties of W Ursae Majoris contact binaries: new results and old problems.
The physical properties of W UMa binary systems are revisited on thebasis of the observational data published in the last decade and of therecent theoretical studies on angular-momentum-loss-driven secularevolution. The absolute elements (masses, radii, luminosities) arederived by an inference method and a calibration based on the availablehigh quality spectroscopic orbits. The derived age (8Gy) agrees with theestimate of Guinan and Bradstreet from space motions. The analysis ofthe resulting physical parameters shows little correlation between thestandard classification in A and W subtype (first proposed by Binnendijk(1970) and only related to the light curve morphology) and theevolutionary status and origin of the systems. Most A-subtype systemsseem to have no evolutionary link with W-subtype ones. The relationbetween total mass and mass ratio for the "bona fide" sample alsosuggests that mass loss from the system may play an important role.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Global evolution of contact binaries
Not Available

Chromospheric Activity in Galactic Open Clusters
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...417..157B&db_key=AST

A catalog of stellar Lyman-alpha fluxes
We present a catalog of stellar Ly-alpha emission fluxes, based on newand archival images obtained with the IUE spacecraft. The catalogincludes 227 stars with detectable Ly-alpha emission fluxes, and upperlimits on the Ly-alpha emission flux for another 48 stars. Multiple fluxmeasurements are given for 52 stars. We present a model for correctingthe observed Ly-alpha flux for attenuation by the local interstellarmedium, and we apply this model to derive intrinsic Ly-alpha fluxes for149 catalog stars which are located in low H I column density directionsof the local interstellar medium. In our catalog, there are 14 late-Aand early-F stars at B-V = 0.29 or less that show detectable emission atLy-alpha. We find a linear correlation between the intrinsic Ly-alphaflux and C II 1335 A flux for stars with B-V greater than 0.60, but theA and F stars deviate from this relation in the sense that theirLy-alpha flux is too low. We also find a good correlation betweenLy-alpha strength and coronal X-ray emission. This correlation holdsover most of the H-R diagram, even for the F stars, where an X-raydeficit has previously been found relative to the transition regionlines of C II and C IV.

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Máquina Neumática
Ascensión Recta:09h32m18.50s
Declinación:-28°37'41.0"
Magnitud Aparente:6.46
Distancia:75.188 parsecs
Movimiento Propio en Ascensión Recta:-91.2
Movimiento Propio en Declinación:43.5
B-T magnitude:6.833
V-T magnitude:6.485

Catálogos y designaciones:
Nombres PropiosS Antliae
HD 1989HD 82610
TYCHO-2 2000TYC 6613-1557-1
USNO-A2.0USNO-A2 0600-12484694
BSC 1991HR 3798
HIPHIP 46810

→ Solicitar más catálogos y designaciones a VizieR