Contents
Images
Upload your image
DSS Images Other Images
Related articles
A census of the Wolf-Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy New Technology Telescope (NTT)/Son of Isaac (SOFI) imaging andspectroscopy of the Wolf-Rayet population in the massive clusterWesterlund 1 are presented. Narrow-band near-infrared (IR) imagingtogether with follow up spectroscopy reveals four new Wolf-Rayet stars,of which three were independently identified recently by Groh et al.,bringing the confirmed Wolf-Rayet content to 24 (23 excluding source S)- representing 8 per cent of the known Galactic Wolf-Rayet population -comprising eight WC stars and 16 (15) WN stars. Revised coordinates andnear-IR photometry are presented, whilst a quantitative near-IR spectralclassification scheme for Wolf-Rayet stars is presented and applied tomembers of Westerlund 1. Late subtypes are dominant, with no subtypesearlier than WN5 or WC8 for the nitrogen and carbon sequences,respectively. A qualitative inspection of the WN stars suggests thatmost (~75 per cent) are highly H deficient. The Wolf-Rayet binaryfraction is high (>=62 per cent), on the basis of dust emission fromWC stars, in addition to a significant WN binary fraction from hardX-ray detections according to Clark et al. We exploit the large WNpopulation of Westerlund 1 to reassess its distance (~5.0kpc) andextinction (AKS ~ 0.96mag), such that it islocated at the edge of the Galactic bar, with an oxygen metallicity ~60per cent higher than Orion. The observed ratio of WR stars to red andyellow hypergiants, N(WR)/N(RSG + YHG) ~3, favours an age of~4.5-5.0Myr, with individual Wolf-Rayet stars descended from progenitorsof initial mass ~40-55Msolar. Qualitative estimates ofcurrent masses for non-dusty, H-free WR stars are presented, revealing10-18Msolar, such that ~75 per cent of the initial stellarmass has been removed via stellar winds or close binary evolution. Wepresent a revision to the cluster turn-off mass for other Milky Wayclusters in which Wolf-Rayet stars are known, based upon the latesttemperature calibration for OB stars. Finally, comparisons between theobserved WR population and subtype distribution in Westerlund 1 andinstantaneous burst evolutionary synthesis models are presented.Based on observations made with ESO telescopes at the La SillaObservatory under programme IDs 073.D-0321 and 075.D-0469.E-mail: Paul.crowther@sheffield.ac.uk
| Shocked Clouds in the Vela Supernova Remnant Unusually strong high-excitation C I has been detected in 11 lines ofsight through the Vela supernova remnant (SNR) by means of UV absorptionline studies of IUE data. Most of these lines of sight lie near thewestern edge of the bright X-ray region of the SNR in a spatiallydistinct band approximately 1° by 4° oriented approximatelynorth-south. The high-excitation C I (denoted C I* and C I**) isinterpreted as evidence of a complex of shocked dense clouds interactingwith the SNR, because of the high pressures indicated in this region. Tofurther analyze the properties of this region of enhanced C I* and CI**, we present new HIRES-processed IRAS data of the entire Vela SNR. Atemperature map calculated from the HIRES IRAS data, based on atwo-component dust model, reveals the signature of hot dust at severallocations in the SNR. The hot dust is anticorrelated spatially withX-ray emission, as would be expected for a dusty medium interacting witha shock wave. The regions of hot dust are strongly correlated withoptical filaments, supporting a scenario of dense clouds interior to theSNR that have been shocked and are now cooling behind the supernovablast wave. With few exceptions, the lines of sight to the stronghigh-excitation C I pass through regions of hot dust and opticalfilaments. Possible mechanisms for the production of the unexpectedlylarge columns of high-excitation C I are discussed. Dense clouds on theback western hemisphere of the remnant may explain the relatively lowX-ray emission in the western portion of the Vela SNR due to the slowerforward shock velocity in regions where the shock has encountered thedense clouds. An alternate explanation for the presence of ground-stateand excited-state neutrals, as well as ionized species, along the sameline of sight is a magnetic precursor that heats and compresses the gasahead of the shock.
| Gamma-ray emission from Wolf-Rayet binaries In the colliding wind region of early-type binaries, electrons can beaccelerated up to relativistic energies displaying power-law spectra, asdemonstrated by the detection of non-thermal radio emission from severalWR+OB systems. The particle acceleration region, located between thestars, is exposed to strong photon fields in such a way that inverseCompton cooling of the electrons could result in a substantialhigh-energy non-thermal flux. In particular cases, the ratio of theenergy densities of magnetic to photon fields in the colliding windregion will determine whether a given source can produce or notsignificant gamma-ray emission. We present here a study of the binariesWR 140, WR 146, and WR 147 in the light of recent radio and gamma-rayobservations. We show that with reasonable assumptions for the magneticfield strength WR 140 can produce the gamma-ray flux from the EGRETsource 3EG J2022+4317. WR 146 and WR 147 are below the detectionthreshold, but new and forthcoming instruments like INTEGRAL and GLASTmight detect non-thermal emission from them.
| Wolf-Rayet star parameters from spectral analyses The Potsdam non-LTE code for expanding atmospheres, which accounts forclumping and iron-line blanketing, has been used to establish a grid ofmodel atmospheres for WC stars. A parameter degeneracy is discovered forearly-type WC models which do not depend on the `stellar temperature'.15 Galactic WC4-7 stars are analyzed, showing a very uniform carbonabundance (He:C = 55:40) with only few exceptions.
| Stellar and wind properties of LMC WC4 stars. A metallicity dependence for Wolf-Rayet mass-loss rates We use ultraviolet space-based (FUSE, HST) and optical/IR ground-based(2.3 m MSSSO, NTT) spectroscopy to determine the physical parameters ofsix WC4-type Wolf-Rayet stars in the Large Magellanic Cloud. Stellarparameters are revised significantly relative to Gräfener et al.(\cite{Grafener1998}) based on improved observations and moresophisticated model atmosphere codes, which account for line blanketingand clumping. We find that stellar luminosities are revised upwards byup to 0.4 dex, with surface abundances spanning a lower range of 0.1 leC/He le 0.35 (20-45% carbon by mass) and O/He le 0.06 (<=10% oxygenby mass). Relative to Galactic WC5-8 stars at known distance, andanalysed in a similar manner, LMC WC4 stars possess systematicallyhigher stellar luminosities, ~ 0.2 dex lower wind densities, yet asimilar range of surface chemistries. We illustrate how theclassification C III lambda 5696 line is extremely sensitive to winddensity, such that this is the principal difference between the subtypedistribution of LMC and Galactic early-type WC stars. Temperaturedifferences do play a role, but carbon abundance does not affect WCspectral types. We illustrate the effect of varying temperature andmass-loss rate on the WC spectral type for HD 32257 (WC4, LMC) and HD156385 (WC7, Galaxy) which possess similar abundances and luminosities.Using the latest evolutionary models, pre-supernova stellar masses inthe range 11-19 Msun are anticipated for LMC WC4 stars, with7-14 Msun for Galactic WC stars with known distances. Thesevalues are consistent with pre-cursors of bright type-Ic supernovae suchas SN 1998bw (alias GRB 980425) for which a minimum total mass of C andO of 14 Msun has been independently derived. Based onobservations made with the NASA-CNES-CSA Far Ultraviolet SpectroscopicExplorer, and NASA-ESA Hubble Space Telescope. Also based onobservations collected at the European Southern Observatory in program63.H-0683, and at the Australian National University Siding SpringObservatory.
| The Anglo-Australian Observatory 2dF facility The 2dF (Two-degree Field) facility at the prime focus of theAnglo-Australian Telescope provides multiple-object spectroscopy over a2° field of view. Up to 400 target fibres can be independentlypositioned by a complex robot. Two spectrographs provide spectra withresolutions of between 500 and 2000, over wavelength ranges of 440 and110nm respectively. The 2dF facility began routine observations in 1997.2dF was designed primarily for galaxy redshift surveys and has a numberof innovative features. The large corrector lens incorporates anatmospheric dispersion compensator, essential for wide wavelengthcoverage with small-diameter fibres. The instrument has two full sets offibres on separate field plates, so that re-configuring can be done inparallel with observing. The robot positioner places one fibre every 6s,to a precision of 0.3arcsec (20μm) over the full field. Allcomponents of 2dF, including the spectrographs, are mounted on a 5-mdiameter telescope top end ring for ease of handling and to keep theoptical fibres short in order to maximize UV throughput. There is apipeline data reduction system which allows each data set to be fullyanalysed while the next field is being observed. 2dF has achieved itsinitial astronomical goals. The redshift surveys obtain spectra at therate of 2500 galaxies per night, yielding a total of about 200000objects in the first four years. Typically a B=19 galaxy gives aspectrum with a signal-to-noise ratio of better than 10 per pixel inless than an hour; redshifts are derived for about 95 per cent of allgalaxies, with 99 per cent reliability or better. Total systemthroughput is about 5 per cent. The failure rate of the positioner andfibre system is about 1:10000 moves or once every few nights, andrecovery time is usually short. In this paper we provide the historicalbackground to the 2dF facility, the design philosophy, a full technicaldescription and a summary of the performance of the instrument. We alsobriefly review its scientific applications and possible futuredevelopments.
| Kinematical Structure of Wolf-Rayet Winds. I.Terminal Wind Velocity New terminal wind velocities for 164 Wolf-Rayet stars (from the Galaxyand LMC) based on PCyg profiles of lambda1550 CIV resonance line werederived from the archive high and low resolution IUE spectra availableform the INES database. The high resolution data on 59 WR stars (39 fromthe Galaxy and 20 from LMC) were used to calibrate the empiricalrelation lambda_min^Abs- lambda_peak^Emis vs terminal wind velocity,which was then used for determinations of the terminal wind velocitiesfrom the low resolution IUE data. We almost doubled the previous mostextended sample of such measurements. Our new measurements, based onhigh resolution data, are precise within 5-7%. Measurements, based onthe low resolution spectra have the formal errors of approx 40-60%. Acomparison of the present results with other determinations suggestshigher precision of approx 20%. We found that the terminal windvelocities for the Galactic WC and WN stars correlate with the WRspectral subtype. We also found that the LMC WN stars have winds slowerthan their Galactic counterparts, up to two times in the case of the WNEstars. No influence of binarity on terminal wind velocities was found.Our extended set of measurements allowed us to test application of theradiation driven wind theory to the WR stars. We found that, contrary toOB stars, terminal wind velocities of the WR stars correlate only weaklywith stellar temperature. We also note that the terminal to escapevelocity ratio for the WR stars is relatively low: 2.55 pm 1.14 for theGalactic WN stars and 1.78 pm 0.70 for the Galactic WCs. This ratiodecreases with temperature of WR stars, contrary to what is observed inthe case of OB stars. The presented results show complex influence ofchemical composition on the WR winds driving mechanism efficiency. Ourkinematical data on WR winds suggest evolutionary sequence: WNL -->WNE --> WCE --> WCL.
| Multi-frequency variations of the Wolf-Rayet system HD193793 (WC7pd+O4-5) III. IUE observations The colliding-wind binary system WR 140 (HD 193793, WC7pd+O4-5, P = 7.94yr) was monitored in the ultraviolet by IUE from 1979 to 1994 in 35short-wavelength high-resolution spectra. An absorption-lineradial-velocity solution is obtained from the photospheric lines of theO component, by comparison with a single O star. The resulting orbitalparameters, e = 0.87 +/- 0.05, omega = 31degr +/- 9degr andKO star = 25 +/- 15 km s-1, confirm the largeeccentricity of the orbit, within the uncertainties of previous opticalstudies. This brings the weighted mean UV-optical eccentricity to e =0.85 +/- 0.04. Occultation of the O-star light by the WC wind and theWC+O colliding-wind region results into orbital modulation of theP-Cygni profiles of the C ii, C iv and Si iv resonance lines. Nearperiastron passage, the absorption troughs of those resonance-lineprofiles increase abruptly in strength and width, followed by a gradualdecrease. In particular, near periastron the blue black-edges of theP-Cygni absorption troughs shift to larger outflow velocities. Wediscuss that the apparently larger wind velocity and velocity dispersionobserved at periastron could be explained by four phenomena: (i)geometrical resonance-line eclipse effects being the main cause of theobserved UV spectral variability, enhanced by sightline crossing of theturbulent wind-wind collision zone; (ii) the possibility of anorbital-plane enhanced WC7 stellar wind; (iii) possible common-envelopeacceleration by the combined WC and O stellar radiation fields; and (iv)possible enhanced radiatively driven mass loss due to tidal stresses,focused along the orbiting line of centers.
| Chemical abundances and winds of massive stars in M31: a B-type supergiant and a WC star in OB 10 We present high quality spectroscopic data for two massive stars in theOB 10 association of M31, OB 10-64 (B0 Ia) and OB 10-WR1 (WC6). Mediumresolution spectra of both stars were obtained using the ISISspectrograph on the William Herschel Telescope. This is supplementedwith Hubble Space Telescope STIS UV spectroscopy and Keck I HIRES datafor OB 10-64. A non-local thermodynamic equilibrium (LTE) modelatmosphere and abundance analysis for OB 10-64 is presented, indicatingthat this star has similar photospheric CNO, Mg and Si abundances tosolar neighbourhood massive stars. A wind analysis of this early B-typesupergiant reveals a mass-loss rate ofMȯ=1.6×10-6Msolaryr-1,and v&infy;=1650kms-1. The corresponding windmomentum is in good agreement with the wind momentum-luminosityrelationship found for Galactic early-B supergiants. Observations of OB10-WR1 are analysed using a non-LTE, line-blanketed code, to revealapproximate stellar parameters of logL/Lsolar~5.7, T*~75kK,v&infy;~3000kms-1,Mȯ/(Msolaryr-1)~10-4.3adopting a clumped wind with a filling factor of 10 per cent.Quantitative comparisons are made with the Galactic WC6 star HD 92809(WR23) revealing that OB 10-WR1 is 0.4 dex more luminous, though it hasa much lower C/He ratio (~0.1 versus 0.3 for HD 92809). Our studyrepresents the first detailed, chemical model atmosphere analysis foreither a B-type supergiant or a Wolf-Rayet (WR) star in Andromeda, andshows the potential of how such studies can provide new information onthe chemical evolution of galaxies and the evolution of massive stars inthe local Universe.
| The VIIth catalogue of galactic Wolf-Rayet stars The VIIth catalogue of galactic PopulationI Wolf-Rayet stars providesimproved coordinates, spectral types and /bv photometry of known WRstars and adds 71 new WR stars to the previous WR catalogue. This censusof galactic WR stars reaches 227 stars, comprising 127 WN stars, 87 WCstars, 10 WN/WC stars and 3 WO stars. This includes 15 WNL and 11 WCLstars within 30 pc of the Galactic Center. We compile and discuss WRspectral classification, variability, periodicity, binarity, terminalwind velocities, correlation with open clusters and OB associations, andcorrelation with Hi bubbles, Hii regions and ring nebulae. Intrinsiccolours and absolute visual magnitudes per subtype are re-assessed for are-determination of optical photometric distances and galacticdistribution of WR stars. In the solar neighbourhood we find projectedon the galactic plane a surface density of 3.3 WR stars perkpc2, with a WC/WN number ratio of 1.5, and a WR binaryfrequency (including probable binaries) of 39%. The galactocentricdistance (RWR) distribution per subtype shows RWRincreasing with decreasing WR subtype, both for the WN and WC subtypes.This RWR distribution allows for the possibility ofWNE-->WCE and WNL-->WCL subtype evolution.
| Non-thermal emission in Wolf-Rayet stars: are massive companions required? We examine the radio spectral indices of 23 Wolf-Rayet (WR) stars toidentify the nature of their radio emission. We identify nine systems asnon-thermal emitters. In seven of these systems the non-thermal emissiondominates the radio spectrum, while in the remaining two it is ofcomparable strength to the thermal, stellar wind emission, giving`composite' spectra. Among these nine systems, seven have knownspectroscopic or visual binary companions. The companions are allmassive O or early B-type stars, strongly supporting a connectionbetween the appearance of non-thermal emission in WR stars and thepresence of a massive companion. In three of these binaries, the originof non-thermal emission in a wind-collision region between the stars hasbeen well established in earlier work. The binary systems that exhibitonly thermal emission are all short-period systems where awind-collision zone is deep within the opaque region of the stellar windof the WR star. To detect non-thermal emission in these systems requiresoptically thin lines of sight to the wind-collision region.
| Exospheric models for the X-ray emission from single Wolf-Rayet stars We review existing ROSAT detections of single Galactic Wolf-Rayet (WR)stars and develop wind models to interpret the X-ray emission. The ROSATdata, consisting of bandpass detections from the ROSAT All-Sky Survey(RASS) and some pointed observations, exhibit no correlations of the WRX-ray luminosity (LX) with any star or wind parameters ofinterest (e.g. bolometric luminosity, mass-loss rate or wind kineticenergy), although the dispersion in the measurements is quite large. Thelack of correlation between X-ray luminosity and wind parameters amongthe WR stars is unlike that of their progenitors, the O stars, whichshow trends with such parameters. In this paper we seek to (i) test byhow much the X-ray properties of the WR stars differ from the O starsand (ii) place limits on the temperature TX and fillingfactor fX of the X-ray-emitting gas in the WR winds. Adoptingempirically derived relationships for TX and fXfrom O-star winds, the predicted X-ray emission from WR stars is muchsmaller than observed with ROSAT. Abandoning the TX relationfrom O stars, we maximize the cooling from a single-temperature hot gasto derive lower limits for the filling factors in WR winds. Althoughthese filling factors are consistently found to be an order of magnitudegreater than those for O stars, we find that the data are consistent(albeit the data are noisy) with a trend of fx ∝(Mν&infy;)-1 in WR stars, as is also the casefor O stars.
| Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters Clumping-corrected mass-loss rates of 64 Galactic Wolf-Rayet (WR) starsare used to study the dependence of mass-loss rates, momentum transferefficiencies and terminal velocities on the basic stellar parameters andchemical composition. The luminosities of the WR stars have beendetermined either directly from the masses, using the dependence of L onmass predicted by stellar evolution theory, or they were determined fromthe absolute visual magnitudes and the bolometric corrections. For thispurpose we improved the relation between the bolometric correction andthe spectral subclass. (1) The momentum transfer efficiencies η(i.e. the ratio between the wind momentum loss and radiative momentumloss) of WR stars are found to lie in the range of 1.4 to 17.6, with themean value of 6.2 for the 64 program stars. Such values can probably beexplained by radiative driving due to multiple scattering of photons ina WR wind with an ionization stratification. However, there may be aproblem in explaining the driving at low velocities. (2) We derived thelinear regression relations for the dependence of the terminal velocity,the momentum transfer efficiency and the mass-loss rates on luminosityand chemical composition. We found a tight relation between the terminalvelocity of the wind and the parameters of the hydrostatic core. Thisrelation enables the determination of the mass of the WR stars fromtheir observed terminal velocities and chemical composition with anaccuracy of about 0.1 dex for WN and WC stars. Using evolutionary modelsof WR stars, the luminosity can then be determined with an accuracy of0.25 dex or better. (3) We found that the mass-loss rates(&mathaccent "705Frelax dot;) of WR stars depend strongly onluminosity and also quite strongly on chemical composition. For thecombined sample of WN and WC stars we found that &mathaccent"705Frelax dot; in Mȯyr-1 can be expressed as&mathaccent "705Frelax dot; ≃ 1.0 ×10-11(L/L ȯ)1.29Y1.7Z0.5 (1) with an uncertainty of σ = 0.19dex (4) The new mass-loss rates are significantly smaller than adoptedin evolutionary calculations, by about 0.2 to 0.6 dex, depending on thecomposition and on the evolutionary calculations. For H-rich WN starsthe new mass-loss rates are 0.3 dex smaller than adopted in theevolutionary calculations of Meynet et al. (1994). (5) The lowermass-loss rates, derived in this paper compared to previously adoptedvalues, facilitate the formation of black holes as end points of theevolution of massive stars. However they might create a problem inexplaining the observed WN/WC ratios, unless rotational mixing ormass-loss due to eruptions is important.
| ICCD Speckle Observations of Binary Stars. XXII. A Survey of Wolf-Rayet Starsfor Close Visual Companions We present the results of a speckle interferometric survey for closevisual companions, mainly among 29 of the apparently brightestWolf-Rayet (W-R) stars. Only one target, WR 48 = theta Mus, was resolvedas a close astrometric binary (with a separation of 46+/-9 mas). Thissystem is probably a triple comprising a short-period W-R binary plus adistant O supergiant companion. Although our binary detection fractionis low, it is not an unexpected result given the selection effects thatmilitate against easy detection of binaries. New, higher resolutionobservations will almost certainly increase the fraction of binaries.There are four known binaries among the six W-R stars in our sample thathave nonthermal radio emission, and this connection supports the ideathat the nonthermal emission originates in the wind-wind collisionbetween components.
| Radio Continuum Measurements of Southern Early-Type Stars. III. Nonthermal Emission from Wolf-Rayet Stars The Australia Telescope Compact Array (ATCA) has been used to search forradio continuum emission at 2.4 and 1.4 GHz from a sample of 36 southernWolf-Rayet stars. Seven Wolf-Rayet stars were detected at 2.4 GHz, ofwhich two were also detected at 1.4 GHz. We have identified sixWolf-Rayet stars, WR 14, 39, 48, 90, 105, and 112, that have nonthermalemission. The ATCA data confirm that at least 40% of Wolf-Rayet starswith measured spectral indices have nonthermal emission at centimeterwavelengths. Properties of each of the six sources are discussed. Themeasured spectral indices are between 0 and -1.0, and the radioluminosities are of order 10^29 ergs s^-1. So far 10 confirmed sourcesof nonthermal emission are known, including the six ATCA detections andfour previously known cases, WR 125, 140, 146, and 147. In all cases,the nonthermal radio emission almost certainly originates from aninteraction between the Wolf-Rayet stellar wind and the wind from amassive companion star. The radio observations agree well withtheoretical predictions for colliding winds. Synchrotron emission occursfrom relativistic electrons accelerated in strong shocks. The nonthermalspectral indices are likely to be close to -0.5. For WR 39, the detectedradio emission is offset by ~3" from the optical position of WR 39 andby ~2" from the optical position of WR 38B. We suggest that the radioemission may originate from a wind-wind interaction between WR 39 and WR38B, although this is not confirmed. For WR 11, the radio spectral indexincreases from +0.3 between 3 and 6 cm to +1.2 between 13 and 20 cm.This is interpreted as evidence for a highly attenuated nonthermalcomponent that originates well within the ionized wind of the W-R starfrom an interaction with the wind of the O9 companion star.
| A spectropolarimetric survey of northern hemisphere Wolf-Rayet stars We present a homogeneous, high signal-to-noise spectropolarimetricsurvey of 16 northern hemisphere Wolf-Rayet (WR) stars. A reduction inpolarization at emission-line wavelengths - the `line effect' - isidentified in four stars: WRs 134, 137, 139, and 141. The magnitude ofthe effect in WR 139 (V444 Cyg) is variable, while WR 136, previouslyreported to show the line effect, does not show it in our data. Assumingthe line effect generally to arise from axisymmetric distortions ofstellar winds, we show that a model in which all WRs have the sameintrinsic (equator-on) polarization, with the observed variations solelya result of inclination effects, is inconsistent with the observations.A model in which the intrinsic polarizations are uniformly distributedis more plausible, but best-fitting results are obtained if thedistribution of polarizations is biased towards small values, with only~20 per cent of stars having intrinsic polarizations greater than ~0.3per cent. Radiative transfer calculations indicate that the observedcontinuum polarizations can be matched by models with equator:poledensity ratios of 2-3. The model spectra have electron-scattering wingsthat are significantly stronger than observed (in both intensity andpolarized flux), confirming that the winds of stars showing intrinsicpolarization must be clumped on small scales as well as being distortedon large scales. We combine the results of our survey with observationsfrom the literature to give a sample of 29 stars which have bothaccurate spectropolarimetric observations and physical parametersderived from standard-model analyses. We find that the line-effect starsare clustered at high M, L in the luminosity-mass-loss rate plane(although they are unexceptional in the terminal velocity-subtype andthe surface-mass-flux-temperature planes). The mass-loss rates derivedfrom radio-continuum observations for these stars are in good accordwith the results of optical emission-line analyses, suggesting that (i)the wind structure of line-effect stars has a density contrast which iseffectively constant with radius, and (ii) the high M values may beartefacts of large-scale wind structure. Assuming that observedspectroscopic and photometric variability of the line-effect stars isrelated to the WR rotation period, we compute equatorial rotationvelocities. These velocities correspond to ~10 per cent of the corebreakup rates, and may be large enough to produce significantwind-compression effects according to the models of Ignace, Cassinelli& Bjorkman.
| UBV beta Database for Case-Hamburg Northern and Southern Luminous Stars A database of photoelectric UBV beta photometry for stars listed in theCase-Hamburg northern and southern Milky Way luminous stars surveys hasbeen compiled from the original research literature. Consisting of over16,000 observations of some 7300 stars from over 500 sources, thisdatabase constitutes the most complete compilation of such photometryavailable for intrinsically luminous stars around the Galactic plane.Over 5000 stars listed in the Case-Hamburg surveys still lackfundamental photometric data.
| Wolf-Rayet stars and O-star runaways with HIPPARCOS. I. Kinematics Reliable systemic radial velocities are almost impossible to secure forWolf-Rayet stars, difficult for O stars. Therefore, to study the motions- both systematic in the Galaxy and peculiar - of these two relatedtypes of hot, luminous star, we have examined the Hipparcos propermotions of some 70 stars of each type. We find that (a) both groupsfollow Galactic rotation in the same way, (b) both have a similarfraction of ``runaways'', (c) mean kinetic ages based on displacementand motion away from the Galactic plane tend to slightly favour thecluster ejection over the the binary supernova hypothesis for theirformation, and (d) those with significant peculiar supersonic motionrelative to the ambient ISM, tend to form bow shocks in the direction ofthe motion. Based on data from the ESA Hipparcos astrometry satellite.Table~1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Radio Continuum Measurements of Southern Early-Type Stars. II. A Distance-limited Sample of Wolf-Rayet Stars A distance-limited sample of southern Wolf-Rayet stars within 3 kpc ofthe Sun has been observed with the Australia Telescope Compact Array at8.64 and 4.80 GHz. Radio continuum flux densities at one or bothfrequencies were obtained for 10 sources and upper limits for 20; foursources are found to be thermal emitters on the basis of the observedspectral index. Five sources are classified as nonthermal. One sourcecould not be classified. We derive mass-loss rates for the thermalsources. After combining them with all existing radio mass-loss rates ofWolf-Rayet stars in the northern and southern hemisphere, we perform acomparison with mass-loss rates derived from optical emission lines. Thetwo methods lead to consistent results, which suggests either that theassumption of a spherically symmetric, stationary, homogeneous stellarwind is correct or that deviations from this assumption affect bothmethods in the same way. Wolf-Rayet mass-loss rates are surprisinglyuniform across spectral type. We find an average mass-loss rate of 4 x10-5 Mȯ yr-1 for all types observed, except for WC9 stars, whichhave rates that are lower by at least a factor of 2. An alternativeexplanation could be partial recombination of helium from He+ to He0 inthe radio region, which would lead to a reduced number of freeelectrons, and therefore reduced radio flux for WC9 stars. Mass-lossrates of 8 x 10-5 Mȯ yr-1 for late WN stars favored in recentstellar evolution models disagree with the observations of thesesubtypes. The results of this survey suggest that ~40% of all Wolf-Rayetstars with measured spectral index are nonthermal emitters at centimeterwavelengths. This percentage is nearly twice as high as that ofnonthermal emitters among OB stars and is higher than that previouslyestimated for WR stars. The nature of the nonthermal emission is stillnot fully understood. Possible causes of nonthermal emission arediscussed. In particular, we speculate that nonthermal emission mayarise from an interaction between a thermal WR wind and surroundingmaterial owing to a shell ejected during a previous evolutionary stageor owing the wind of a companion star.
| A Survey of Nebulae around Galactic Wolf-Rayet Stars in the Southern Sky. III. Survey Completion and Conclusions We present the conclusion of a narrow-band optical CCD survey ofWolf-Rayet stars in the southern portion of the Milky Way. In this partof the survey we complete our survey of the southern Galaxy and reportthe detection of 10 new optical nebulae associated with Wolf-Rayetstars. This brings the final survey total to 40 Wolf-Rayet stars withassociated nebulae in 114 southern Galactic fields for a 35% detectionrate. Our results suggest that the Galactic environment has littleapparent effect on the detection rate of nebulae associated withWolf-Rayet stars. Indeed, a more important role in the production ofnebulae is likely to be played by the evolution of the central star. Thesurvey results also suggest a slightly higher incidence of nebuladetection around WN stars over WC stars, although nebulae associatedwith WC stars are noted as being generally larger and some may have beenmissed through being larger than the CCD array used. Indeed, theincreased rate of nebula detection compared to that of a northernGalactic survey can be accounted for solely through the fact that alarger region of sky around the Wolf-Rayet stars was imaged in oursouthern survey as compared to the northern survey. Larger nebulaeexisting around WC as opposed to WN stars are also consistent with thecurrent theory of the evolution of Wolf-Rayet stars from WN to WC.
| Large IRAS Shells Around Galactic Wolf-Rayet Stars and the O Star Phase of Wolf-Rayet Evolution Abstract image available at:http://adsabs.harvard.edu/abs/1996AJ....112.2828M
| Pulsations of WR stars: results of a 3 year survey of 6 WR stars. We report the result of the 3 year search for rapid oscillation of WRstars predicted by stellar models (Schaller 1992, Glatzel et al. 1993).The photometry of 6 WR stars (4 WN and 2 WC stars) was carried outduring the best photometric nights in 9 runs of 3 weeks using themulti-channel photometer mode of the CCD camera attached to the 0.7mSwiss telescope at La Silla ESO observatory. One 5-day simultaneousspectroscopic (1.52m ESO telescope) and photometric run has also beenincluded. We confirm the detection of the oscillation by Matthews et al.(1992) for WR6 (HD 50896) and we made two unconfirmed new detections(for WR78 and WR111). Nevertheless and taking into account the scarcityof the event and the difficulties to observe it, such oscillationsremain to be confirmed in a more reliable way. We set the upper limit tothe amplitude of such oscillations in shot-noise limited observingconditions to 1.15mmag in all UBV filters. No variation of emissionlines was detected in moderate resolution spectra. We do not confirm thefirst detection of a 627 sec period oscillation of WR40 reported byBlecha et al. (1992).
| An IRAS-based Search for New Dusty Late-Type WC Wolf-Rayet Stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS..100..413C&db_key=AST
| Spectral analyses of 25 Galactic Wolf-Rayet stars of the carbon sequence. We present a grid of helium-carbon models for Wolf-Rayet (WR) stars ofthe carbon sequence (WC) with β_ C_=0.2 (carbon mass fraction),thus extending our previously released grid with β_C_=0.6 to adifferent chemical composition. The WR model atmospheres are based onthe so-called standard assumptions. The calculations account for non-LTEradiation transfer in spherically expanding atmospheres. Helium andcarbon are represented by detailed model atoms, especially concerningthe ions Ciii and Civ. Using the model grids 25 Galactic WC stars ofintermediate subtype (WC5 to WC8) are analyzed. Subsequently we performfine analyses by calculating several individual models for each of theprogram stars. Temperatures, radii, mass-loss rates and terminalvelocities are determined together with the carbon to helium ratio. Theanalyzed WC stars are found to form two groups, which can bedistinguished by the strength of their emission lines. Stars with weaklines (WC-w) have effective temperatures close to 50kK and their windsare relatively thin, forming the continuous spectrum in regions withsmall expansion velocities. WC stars with strong lines (WC-s) havehigher effective temperatures (60 to 100kK, referring to the coreradius) and thick winds. Thus there is a strong analogy to thedistribution of the early-type WN stars (WNE-w and WNE-s, respectively).For the WC stars we determine luminosities between 10^4.7^ and10^5.5^Lsun_ and mass-loss rates from 10^-4.8^ to10^-3.9^Mȯ/yr. The carbon mass fraction varies from 0.2 to 0.6. Nocorrelation is found between the carbon abundance and any of the stellarparameters (e.g. temperature, luminosity) or the spectral subtype. Theevolution of WR stars is discussed by comparing the results of ouranalyses with evolutionary tracks.
| A spectroscopic database for Stephenson-Sanduleak Southern Luminous Stars A database of published spectral classifications for objects in theStepenson-Sanduleak Luminous Stars in the Southern Milky Way catalog hasbeen compiled from the literature. A total of 6182 classifications for2562 stars from 139 sources are incorporated.
| Terminal Velocities of Wolf-Rayet Star Winds from Low Resolution IUE Spectra Attracted by the simplicity of the recently published by Prinja (1994)method of determination of terminal wind velocities in hot stars fromlow resolution IUE spectra we investigate its application to WR stars.With a large sample of low resolution IUE spectra of WR stars we foundeven simpler, that is linear instead of square, empirical relationbetween Delta lambda as defined by Prinja (1994) and terminal windvelocity -- vinfty. Using this new empirical relation wepresent vinfty for a sample of 85 galactic and LMC stars, 19of them determined for the first time. We almost tripled the number ofterminal velocity determinations for LMC WR stars. The comparison withother determinations shows that this simple method is accurate to within10-20%. We confirm the correlation between terminal velocity and WCsubtype. We also show that terminal velocities of WN stars are lowerthan that of WCE. A comparison between galactic and LMC stars shows thatthe LMC WN stars have slower winds in most of WN subtypes.
| The ROSAT PSPC survey of the Wolf-Rayet stars Not Available
| Pulsations of Wolf-Rayet stars: observational results for five Wolf-Rayet stars Not Available
| The interstellar medium around Wolf-Rayet stars: clues to evolution (Invited) Not Available
| Low resolution IUE spectra of Wolf-Rayet stars. We present uniformly reduced and measured equivalent widths, FWHM andobserved line fluxes for 94 "single" WR stars (34 galactic WN, 22galactic WC, 31 LMC WN and 7 LMC WC) based on the archive IUE spectra ofWR stars gathered from different observational runs and from differentepochs. The spectra are used for spectral classification in theultraviolet region and for searching correlations among the strength andwidths of emission lines of different ions. Some correlations withoptical and near IR lines observed by other authors are given as well.The set of spectra we use is almost complete to 12 magnitude andrepresentative according to spectral subtype of WR stars.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Voiles |
Right ascension: | 08h54m59.17s |
Declination: | -47°35'32.6" |
Apparent magnitude: | 8.95 |
Distance: | 3448.276 parsecs |
Proper motion RA: | -2.9 |
Proper motion Dec: | 8.7 |
B-T magnitude: | 9.492 |
V-T magnitude: | 8.995 |
Catalogs and designations:
|