Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 2577-134-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Chromospheric Activity and Jitter Measurements for 2630 Stars on the California Planet Search
We present time series measurements of chromospheric activity for morethan 2600 main-sequence and subgiant stars on the California PlanetSearch (CPS) program with spectral types ranging from about F5V to M4Vfor main-sequence stars and from G0IV to about K5IV for subgiants. Thelarge data set of more than 44,000 spectra allows us to identify anempirical baseline floor for chromospheric activity as a function ofcolor and height above the main sequence. We define ?S as anexcess in emission in the Ca II H and K lines above the baselineactivity floor and define radial velocity jitter as a function of?S and B - V for main-sequence and subgiant stars. Although thejitter for any individual star can always exceed the baseline level, wefind that K dwarfs have the lowest level of jitter. The lack ofcorrelation between observed jitter and chromospheric activity in Kdwarfs suggests that the observed jitter is dominated by instrumental oranalysis errors and not astrophysical noise sources. Thus, given thelong-term precision for the CPS program, radial velocities are notcorrelated with astrophysical noise for chromospherically quiet K dwarfstars, making these stars particularly well suited for the highestprecision Doppler surveys. Chromospherically quiet F and G dwarfs andsubgiants exhibit higher baseline levels of astrophysical jitter than Kdwarfs. Despite the fact that the rms in Doppler velocities iscorrelated with the mean chromospheric activity, it is rare to seeone-to-one correlations between the individual time series activity andDoppler measurements, diminishing the prospects for correctingactivity-induced velocity variations in F and G dwarfs.Based on observations obtained at the Keck Observatory and LickObservatory, which are operated by the University of California.

The N2K Consortium. VII. Atmospheric Parameters of 1907 Metal-rich Stars: Finding Planet-Search Targets
We report high-precision atmospheric parameters for 1907 stars in theN2K low-resolution spectroscopic survey, designed to identify metal-richFGK dwarfs likely to harbor detectable planets. Of these stars, 284 arein the ideal temperature range for planet searches,Teff<=6000 K, and have a 10% or greater probability ofhosting planets based on their metallicities. The stars in thelow-resolution spectroscopic survey should eventually yield >60 newplanets, including 8-9 hot Jupiters. Short-period planets have alreadybeen discovered orbiting the survey targets HIP 14810 and HD 149143.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Common proper motion stars in the AGK 3
A search was made of common-proper-motion (CPM) systems among AGK 3stars. The selection of physical systems was based upon the ratiobetween the angular separation (rho) and the proper motion (mu); the CPMstars found are presented in two tables. Table I lists systems withrho/mu less than 1000 years. It contains 326 entries, and the proportionof optical pairs is estimated to be 1 percent. Table II lists systemswith rho/mu in the range 1000 to 3500 years; it contains 113 systems,but only 60 percent of them are physical. Nevertheless, these systemsoften have separations larger than 10,000 AU and are the mostinteresting for the study of the tail of the distribution function ofthe semimajor axes.

The fourth meridian catalog of Besancon Observatory
The catalog presented gives differential meridian positions for 670F-type stars between plus 15 and plus 45 deg declination. The positionsare reduced to the equinox of 1950.0 without proper motions; 333 FK4stars were used as reference stars. A minimum of three and an average offive transits of each program star were observed photoelectrically usinga Gautier transit circle and a Hog grid. The internal accuracy ofindividual measurements is shown to range from 0.013 sec in rightascension and 0.30 arcsec in declination for brighter stars under betterobserving conditions to 0.020 sec in right ascension and 0.38 arcsec indeclination for fainter stars under worse conditions. The standarderrors were applied to compute weighted mean positions, mean epochs, andunweighted means for the program stars. Mean corrections for 283 FK4stars are also provided.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Couronne boréale
Right ascension:15h46m22.92s
Declination:+36°27'09.4"
Apparent magnitude:8.735
Distance:73.964 parsecs
Proper motion RA:-103.6
Proper motion Dec:58.2
B-T magnitude:9.409
V-T magnitude:8.791

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 2577-134-1
USNO-A2.0USNO-A2 1200-07648450
HIPHIP 77245

→ Request more catalogs and designations from VizieR