Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 203133


Contents

Images

- No Images Found -
Upload your image

DSS Images   Other Images


Related articles

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

On the Origin of Long Secondary Periods in Semiregular Variables
The presence of a long secondary period (LSP) in the light curves ofsome local semiregular variables has been known for many years.Furthermore, the LSPs have recently been found in the light curves ofapproximately 25% of the semiregular variables in the LMC. Theytypically have a length of ~500-4000 days, some 5-15 times longer thanthe primary period. Binarity, pulsation, periodic dust ejection, androtation have been suggested as the origin of the LSPs. Here we analyzeechelle spectra of a group of local semiregular variables with LSPs(hereafter LSPVs) in order to try to distinguish between thesesuggestions. In general, we find that LSPVs do not have broader spectralfeatures than semiregulars without a long secondary period (hereafternon-LSPVs). The general upper limit on the equatorial rotation velocityof 3 km s-1 rules out rotating spot and similar models. OneLSPV, V Hya, does have broader spectral lines than similar carbon stars,but it is shown here that rotation alone is not a good model forexplaining the broad lines. Mid-infrared colors of LSPs and non-LSPVsare similar and there are no LSPVs showing the large (60-25) μm IRAScolor exhibited by some R Coronae Borealis (RCB) stars. Thus, there isno evidence for periodic dust ejection from LSPVs. Finally, we find thatthe LSPVs show larger radial velocity variations than non-LSPVs, whichsuggests that LSPs are caused either by binarity or by pulsation. Asimilar conclusion was derived by Hinkle and co-workers.

Mass-loss from dusty, low outflow-velocity AGB stars. I. Wind structure and mass-loss rates
We present the first results of a CO(2-1), (1-0), and 86 GHz SiO masersurvey of AGB stars, selected by their weak near-infrared excess. Amongthe 65 sources of the present sample we find 10 objects with low COoutflow velocities, vexp <~ 5 km s-1.Typically, these sources show (much) wider SiO maser features.Additionally, we get 5 sources with composite CO line profiles, i.e. anarrow feature is superimposed on a broader one, where both componentsare centered at the same stellar velocity. The gas mass-loss rates,outflow velocities and velocity structures suggested by these lineprofiles are compared with the results of hydrodynamical modelcalculations for dust forming molecular winds of pulsating AGB stars.The observations presented here give support to our recent lowoutflow-velocity models, in which only small amounts of dust are formed.Therefore, the wind generation in these models is dominated by stellarpulsation. We interpret the composite line profiles in terms ofsuccessive winds with different characteristics. Our hydrodynamicalmodels, which show that the wind properties may be extremely sensitiveto the stellar parameters, support such a scenario.Based on observations obtained at the European Southern Observatory, LaSilla, Chile and at the IRAM, Pico Veleta, Spain.

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

The ISO-SWS post-helium atlas of near-infrared stellar spectra
We present an atlas of near-infrared spectra (2.36 mu m-4.1 mu m) of ~300 stars at moderate resolution (lambda /delta lambda ~ 1500-2000). Thespectra were recorded using the Short-Wavelength Spectrometer aboard theInfrared Space Observatory (ISO-SWS). The bulk of the observations wereperformed during a dedicated observation campaign after the liquidhelium depletion of the ISO satellite, the so-called post-heliumprogramme. This programme was aimed at extending the MK-classificationto the near-infrared. Therefore the programme covers a large range ofspectral types and luminosity classes. The 2.36 mu m-4.05 mu m region isa valuable spectral probe for both hot and cool stars. H I lines(Bracket, Pfund and Humphreys series), He I and He II lines, atomiclines and molecular lines (CO, H2O, NH, OH, SiO, HCN,C2H2, ...) are sensitive to temperature, gravityand/or the nature of the outer layers of the stellar atmosphere(outflows, hot circumstellar discs, etc.). Another objective of theprogramme was to construct a homogeneous dataset of near-infraredstellar spectra that can be used for population synthesis studies ofgalaxies. At near-infrared wavelengths these objects emit the integratedlight of all stars in the system. In this paper we present the datasetof post-helium spectra completed with observations obtained during thenominal operations of the ISO-SWS. We discuss the calibration of the SWSdata obtained after the liquid helium boil-off and the data reduction.We also give a first qualitative overview of how the spectral featuresin this wavelength range change with spectral type. The dataset isscrutinised in two papers on the quantitative classification ofnear-infrared spectra of early-type stars ({Lenorzer} et al.\cite{lenorzer:2002a}) and late-type stars (Vandenbussche et al., inprep). Based on observations with ISO, an ESA project with instrumentsfunded by ESA Members States (especially the PI countries France,Germany, the Netherlands and the United Kingdom) and with theparticipation of ISAS and NASA. The full atlas is available inelectronic form at www.edpsciences.org Table 1 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/390/1033

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

Millimetre observations of infrared carbon stars. II. Mass loss rates and expansion velocities
Dust- and gas mass loss rates and distances are determined for a sampleof about 330 infra-red carbon stars that probe a distance up to about5.5 kpc. The dependence of the dust- and gas mass loss rates, and theexpansion velocity upon galactic longitude (l) are studied. It is foundthat the expansion velocity significantly depends on l, but that theabsolute bolometric magnitude, the dust mass loss rate and thegas-to-dust ratio depend on l marginally, if at all, and the gas massloss rate does not depend on l. Beyond the solar circle, the expansionvelocity (as well as the luminosity, dust-to-gas ratio, dust mass lossrate) is lower than inside the solar circle, as expected from theoverall gradient in metallicity content of the Galaxy. Combining theaverage expansion velocity inside and beyond the solar circle with thetheoretically predicted relation between expansion velocity andgas-to-dust ratio, we find that the metallicity gradient in the solarneighbourhood is about -0.034 dex/kpc, well within the quoted range ofvalues in the literature.

Millimetre observations of infrared carbon stars. I. The data
Millimetre observations of IRAS selected red carbon stars are presented.About 260 stars have been observed with SEST and IRAM in the CO (1-0)and CO (2-1) lines and partially in HCN (1-0) and SiO (3-2). An overalldetection rate, in at least one line, of about 80% is achieved. Thesurvey represents the second largest survey for AGB stars, and thelargest ever for carbon stars. Two new detections in SiO (3-2) in carbonstars are reported. When available, the SiO/HCN and HCN/CO (1-0) lineratios are consistent with the ratios expected for carbon stars. Basedon observations collected at the European Southern Observatory, LaSilla, Chile within program ESO 60.E-0103, 62.L-0128, 64.L-0012 and66.D-0027. Also based on observations with the IRAM telescope, Granada,Spain under programs 98-97, 141-97 and 010-99. The complete Fig. 1 isonly available in electronic form at http://www.edpsciences.org. Thecomplete Table 3 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/501

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

Polarimetry of 167 Cool Variable Stars: Data
Multicolor photoelectric polarimetry is presented for 167 stars, most ofwhich are variable stars. The observations constitute a data set thatfor some stars covers a time span of 35 yr. Complex variations are foundover time and wavelength and in both the amount of polarization and itsposition angle, providing constraints for understanding the polarizingenvironments in and around these cool stars.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

The effective temperatures of carbon-rich stars
We evaluate effective temperatures of 390 carbon-rich stars. Theinterstellar extinction on their lines of sights was determined andcircumstellar contributions derived. The intrinsic (dereddened) spectralenergy distributions (SEDs) are classified into 14 photometric groups(HCi, CVj and SCV with i=0,5 and j=1,7). The newscale of effective temperatures proposed here is calibrated on the 54angular diameters (measured on 52 stars) available at present from lunaroccultations and interferometry. The brightness distribution on stellardiscs and its influence on diameter evaluations are discussed. Theeffective temperatures directly deduced from those diameters correlatewith the classification into photometric groups, despite the large errorbars on diameters. The main parameter of our photometric classificationis thus effective temperature. Our photometric < k right >1/2 coefficients are shown to be angular diameters on arelative scale for a given photometric group, (more precisely for agiven effective temperature). The angular diameters are consistent withthe photometric data previously shown to be consistent with the trueparallaxes from HIPPARCOS observations (Knapik, et al. \cite{knapik98},Sect. 6). Provisional effective temperatures, as constrained by asuccessful comparison of dereddened SEDs from observations to modelatmosphere predictions, are in good agreement with the values directlycalculated from the observed angular diameters and with those deducedfrom five selected intrinsic color indices. These three approaches wereused to calibrate a reference angular diameter Phi 0 and theassociated coefficient CT_eff. The effective temperatureproposed for each star is the arithmetic mean of two estimates, one(``bolometric'') from a reference integrated flux F0, theother (``spectral'') from calibrated color indices which arerepresentative of SED shapes. Effective temperatures for about 390carbon stars are provided on this new homogeneous scale, together withvalues for some stars classified with oxygen-type SEDs with a total of438 SEDs (410 stars) studied. Apparent bolometric magnitudes are given.Objects with strong infrared excesses and optically thick circumstellardust shells are discussed separately. The new effective temperaturescale is shown to be compatible and (statistically) consistent with thesample of direct values from the observed angular diameters. Theeffective temperatures are confirmed to be higher than the mean colortemperatures (from 140 to 440 K). They are in good agreement with thepublished estimates from the infrared flux method forTeff>= 3170 K, while an increasing discrepancy is observedtoward lower temperatures. As an illustration of the efficiency of thephotometric classification and effective temperature scale, the C/Oratios and the Merrill-Sanford (M-S) band intensities are investigated.It is shown that the maximum value, mean value and dispersion of C/Oincrease along the photometric CV-sequence, i.e. with decreasingeffective temperature. The M-S bands of SiC2 are shown tohave a transition from ``none'' to ``strong'' at Teff =~(2800+/- 150right ) K. Simultaneously, with decreasing effectivetemperature, the mean C/O ratio increases from 1.04 to 1.36, thetransition in SiC2 strength occurring while 1.07<= C/O<= 1.18. This research has made use of the Simbad database operatedat CDS, Strasbourg, France. Table 10 is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)}or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/178

Models of circumstellar molecular radio line emission. Mass loss rates for a sample of bright carbon stars
Using a detailed radiative transfer analysis, combined with an energybalance equation for the gas, we have performed extensive modelling ofcircumstellar CO radio line emission from a large sample of opticallybright carbon stars, originally observed by Olofsson et al. (ApJS, 87,267). Some new observational results are presented here. We determinesome of the basic parameters that characterize circumstellar envelopes(CSEs), e.g., the stellar mass loss rate, the gas expansion velocity,and the kinetic temperature structure of the gas. Assuming a sphericallysymmetric CSE with a smooth gas density distribution, created by acontinuous mass loss, which expands with a constant velocity we are ableto model reasonably well 61 of our 69 sample stars. The derived massloss rates depend crucially on the assumptions in the circumstellarmodel, of which some can be constrained if enough observational dataexist. Therefore, a reliable mass loss rate determination for anindividual star requires, in addition to a detailed radiative transferanalysis, good observational constraints in the form of multi-lineobservations and radial brightness distributions. In our analysis we usethe results of a model for the photodissociation of circumstellar CO byMamon et al. (1988). This leads to model fits to observed radialbrightness profiles that are, in general, very good, but there are alsoa few cases with clear deviations, which suggest departures from asimple r-2 density law. The derived mass loss rates spanalmost four orders of magnitude, from ~ 5 10-9Msun yr-1 up to ~ 2 10-5Msun yr-1, with the median mass loss rate being ~3 10-7 Msun yr-1. We estimate that themass loss rates are typically accurate to ~ 50% within the adoptedcircumstellar model. The physical conditions prevailing in the CSEs varyconsiderably over such a large range of mass loss rates. Among otherthings, it appears that the dust-to-gas mass ratio and/or the dustproperties change with the mass loss rate. We find that the mass lossrate and the gas expansion velocity are well correlated, and that bothof them clearly depend on the pulsational period and (with largerscatter) the stellar luminosity. Moreover, the mass loss rate correlatesweakly with the stellar effective temperature, in the sense that thecooler stars tend to have higher mass loss rates, but there seems to beno correlation with the stellar C/O-ratio. We conclude that the massloss rate increases with increased regular pulsation and/or luminosity,and that the expansion velocity increases as an effect of increasingmass loss rate (for low mass loss rates) and luminosity. Five, of theremaining eight, sample stars have detached CSEs in the form ofgeometrically thin CO shells. The present mass loss rates and shellmasses of these sources are estimated. Finally, in three cases weencounter problems using our model. For two of these sources there areindications of significant departures from overall spherical symmetry ofthe CSEs. Carbon stars on the AGB are probably important in returningprocessed gas to the ISM. We estimate that carbon stars of the typeconsidered here annually return ~ 0.05 Msun of gas to theGalaxy, but more extreme carbon stars may contribute an order ofmagnitude more. However, as for the total carbon budget of the Galaxy,carbon stars appear to be of only minor importance. Presented in thispaper is observational data collected using the Swedish-ESOsubmillimetre telescope, La Silla, Chile, the 20\,m telescope at OnsalaSpace Observatory, Chalmers Tekniska Högskola, Sweden, and the NRAO12\,m telescope located at Kitt Peak, USA.}

Distance Determination of Mass-Losing Stars
Based on the Principal Component Analysis on IRAS colors and the radiodata, the distances to 183 mass-losing red giant stars were determinedusing the radial velocity and Oort's galactic rotation model for azero-point calibration in the distance modulus. Also, based on therequirement of higher accuracy of the distance determination, themass-losing red giant stars were divided into two groups by means of thefirst-principal component representing an intrinsic photometric propertyof the expanding shell; then, the distances were estimated to be log{d(kpc)}=0.458 p_2+0.09+/-0.13 for group 1 and log {d(kpc)}=0.325p_2+0.45+/-0.15 for group 2, where p_2 is the principal componentcorresponding to the distance, as obtained from the IRAS flux, which wasassumed to be inversely proportional to the square of the distance.Thus,these two groups differ from each other not only by theirphotometric properties, but also by their average distances, by a factorof about 2. Systematic differences exist between the two groups in theirpopulation characteristics and in their evolutionary stages.

Circumstellar shells of the mass-losing asymptotic giant branch stars: limits for the dust-driven winds.
Not Available

Carbon Stars
Absolute magnitudes are estimated for carbon stars of various subtypesin the Hipparcos catalogue and as found in the Magellanic Clouds.Stellar radii fall within the limits of 2.4-4.7 AU. The chemicalcomposition of carbon stars indicates that the C-N stars show nearlysolar C/H, N/H, and ^12C/^13C ratios. This indicates that much of the Cand N in our Galaxy came from mass-losing carbon stars. Special carbonstars such as the C-R, C-H, and dC stars are described. Mass loss fromasymptotic giant branch (AGB) carbon stars, at rates up to several x10^-5 M{solar} year^-1, contributes about half of the total mass returnto the interstellar medium. R stars do not lose mass and may becarbon-rich red giants. The mass loss rates for Miras are about 10 timeshigher than for SRb and Lb stars, whose properties are similar enough toshow that they are likely to belong to the same population. Thedistribution of carbon star mass loss rates peaks at about 10^-7M{solar} year^-1, close to the rate of growth of the core mass anddemonstrative of the close relationship between mass loss and evolution.Infrared spectroscopy shows that dust mixtures can occur. Detachedshells are seen around some stars; they appear to form on the timescales of the helium shell flashes and to be a normal occurrence incarbon star evolution.

The carbon-rich dust sequence - Infrared spectral classification of carbon stars
We have developed a classification system for the infrared spectralemission from carbon stars using a sample of 96 bright carbon-richvariables associated with the asymptotic giant branch. In addition tothe stellar contribution, most spectra include the 11.2 micron emissionfeature from SiC and either a smooth, cool continuum from amorphouscarbon or a secondary emission feature at 9.0 microns. We haveidentified a carbon-rich dust sequence along which the amorphous carboncomponent grows while the 9.0 micron feature declines in strength. Alongthis spectral sequence, the proportion of Mira variables increases, asdoes the period of variability, the mass-loss rate, and the thickness ofthe circumstellar shell. Thus the carbon-rich dust sequence appears tobe an evolutionary sequence. One class of spectra shows a particularlystrong 9.0 micron feature, enhanced C/O ratio, and several other unusualproperties that suggest a different sequence, perhaps related to Jstars.

The PL relation of galactic carbon LPVs. The distance modulus to LMC
We present a period-luminosity (PL) diagram of 115 galactic carbon-richlong period variables (LPVs) observed by the HIPPARCOS satellite, in theform of the (MK,log P) relation. Our plot is compared to thediagram of carbon variables observed in the Large Magellanic Cloud(LMC). Both diagrams are found very similar and three samples aredelineated: long period variables close to the PL relation of Feast etal. (1989), short period-overluminous variables and a few underluminousLPVs, respectively Samples 1, 2 and 3. The used data were deduced fromexpectations of true parallaxes (Knapik et al. 1997) which arestatistically free of the Lutz-Kelker effect. The remaining bias due tothe non-gaussian distribution of absolute magnitudes is avoided: anon-linear parametric method is applied in Sect. 4 to the analysis ofthe PL relation for Sample 1 (72 LPVs). We obtainMK=(-3.99+/-0.13)log P+(2.07+/-0.15), in good agreement withthe slope found for LMC variables by Reid et al. (1995). The LMCdistance modulus then derived is mu =18.50+/-0.17. A well-defined upperlimit (ul) for long period stars in Sample 1 is found, with similarslopes in both the Galaxy (-4.85) and LMC (-4.72). No correction formetallicity was applied to the results. This research has made use ofthe Simbad database operated at CDS, Strasbourg, France.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Semiregular variables of types SRa and SRb. Silicate dust emission features.
We have analysed the IRAS-LRS spectra of representative samples ofO-rich Semiregular (SR) variables of types SRa and SRb and of Miravariables. The silicate features were extracted by fitting the energydistribution with two blackbodies, approximating the continuous emissionfrom the photosphere and the circumstellar dust. The shape and strengthof the silicate features in the LRS range were then studied by computingthe residual fluxes in 5 selected wavelength regions covering the whole10μm and 18μm features and parts of the 10μm feature assignedto emission from olivine and possibly corundum. We compare our approachwith previous investigations and argue that a quantitative study ofdetails in the feature shape requires subtraction of the stellar and thedust continuum and the use of flux ratios rather than a discreteclassification system. The Miras form an extension of the SRb's towardslower stellar temperatures and higher dust shell opacities and they haveslightly higher average dust temperatures. The SRa's seem to be moresimilar to the Miras in their dust shell properties. The average 10μmfeature shapes of the three groups of variables agree, but taking intoaccount the photospheric and dust shell parameters, systematicdifferences show up. For stars hotter than about 2900K, the 10μmfeature width shows a wide range of values but no clear trend with thestellar temperature or the optical depth of the dust shell. These starsare generally SRb variables and have the thinnest dust envelopes. Atcooler stellar temperatures, where mostly Miras are found, the opticaldepth of the dust shell determines the feature width in the sense thatthicker shells have narrower features. It appears that the 13μmfeature is obvious only in a narrow range of effective temperature andoptical depth of the dust shell. We discuss our results in terms ofradiative transfer effects, differences in the average grain size,annealing and hydration of amorphous silicates and contributions fromother dust components. Of these possibilities the last one seems to bemost plausible with regard to the behavior of the 10μm feature width.The observations can be interpreted in terms of changing contributionsfrom olivine and corundum possibly caused by an increasing amount ofdust processing (Miras) and the influence of the atmospheric structureon the formation of these dust components (SRb's).

Interstellar extinction and the intrinsic spectral distribution of variable carbon stars.
We present a new method of evaluation of the extinction by interstellardust on cool carbon variables. These late-type stars show no markedrelationship between spectral classification (the R, N- and C-types) andphotometric colour indices. The pair method is thus ruled out, at leastin the form currently in use for early-type or intermediate stars. Ourmethod makes use of the whole spectral energy distributions from UV toIR. A sample of 60 unreddened carbon variables is delineated and newcolour-colour diagrams are proposed where the reddening vector is nearlyperpendicular to their narrow intrinsic locus. Six photometric groups(or boxes : CV1 to 6) are derived among unreddened stars. They show acontinuous range of spectral energy distributions from "bluer" to"redder", and mean colour indices are obtained. A pair method isdescribed where each presumably reddened star is compared to these meanunreddened stars, a given extinction law being assumed. As anillustration, the results are shown for a sample of 133 well-documentedstars. The mean extinction law usually adopted for the diffuseinterstellar medium (R_V_=~3.1) is shown to provide good fits. Thethreshold for reddening detection turns to be E(B-V)=~0.02-0.03A goodcorrelation is observed when the derived colour excesses are compared tovalues from maps in the literature. The mean rate of visual extinctionamounts to =~1.25+/-1.1 , ranging from 0.37 nearl=~240° (intercloud) to 2.1 (cloud + intercloud) in two structurescorrelated with Gould's belt.

Infrared emission and dynamics of outlfows in late-type stars
The dynamical structure and infrared emission of winds around late-typestars are studied in a self-consistent model that couples the equationsof motion and radiative transfer. Thanks to its scaling properties, boththe dynamics and IR spectrum of the solution are fully characterized bytauF, the flux-averaged optical depth of the wind. Five typesof dust grains are considered: astronomical silicate, crystallineolivine, graphite, amorphous carbon and SiC, as well as mixtures.Analysis of infrared signatures provides constraints on the grainchemical composition and indications for the simultaneous existence ofsilicate and carbon grains. The abundances of crystalline olivine inSi-dominated grains and of SiC in C-dominated grains are found to belimited to less than or equal to 20%-30%. Furthermore, in carbonaceousgrains carbon is predominantly in amorphous form, rather than graphite.In mixtures, carbonaceous grains tend to dominate the dynamic behaviorwhile silicate and SiC grains dominate the IR signature. The region ofparameter space where radiation pressure can support a given mass-lossrate is identified, replacing the common misconception M nu less than orequal to L*/c, and it shows that radiatively driven windsexplain the highest mass-loss rates observed to date. A new method toderive mass-loss rates from IR data is presented, and its results agreewith other determinations. The theoretical spectra and colors are ingood agreement with observations. IRAS Low Resolution Spectrometerclasses are associated with tauF for various grain materialsand the regions of color-color diagrams expected to be populated bylate-type stars are identified. For a given grain composition, locationin the color-color diagram follows a track with position along the trackdetermined by tauF. We show that cirrus emission can severelyaffect point source measurements to the extent that their listed IRASlong-wavelength fluxes are unreliable. Whenever the listed IRAS flagcirr3 exceeds the listed 60 micrometers flux by more than a factor of 2,the 60 and 100 micrometers fluxes are no longer indicative of theunderlying point source. After accounting of cirrus contamination,essentially all IRAS point sources (95%) located in the relevant regionsof the color-color diagrams can be explained as late-type stars. Thereis no need to invoke time dependent effects, such as detached shells,for example, to explain either the colors or mass-loss rates of thesesources. Although various indications of time varying mass-loss ratesexist in numerous sources, the infrared properties of this class ofstars are well explained as a whole with steady state shows.

Semiregular variables of types SRa and SRb. New JHKL'M-photometry for 200 stars.
This paper presents new JHKL'M observations of 200 Semiregular variables(SRVs) of types SRa and SRb. The sample was defined in Kerschbaum &Hron (1992a, Paper I) by means of a certain limit in bolometricalmagnitude. From the sample of 350 objects, 260 now have near infrared(NIR) photometry - for 60 of these stars data from the literature areused. In total 290 datasets are available because of some multipleobservations. We briefly compare the photometry obtained at differentobservatories. Small but significant differences are found. A firstanalysis of the photometry supports one of the main findings of Paper I.The, in many aspects inhomogeneous, O-rich semiregular variables oftypes SRa and SRb can be successfully split in two subgroups called the`blue' and `red'/`Mira' SRVs. A separation of the `red' SRVs fromintrinsic Miras additionally requires variability information.

86 GHz SiO, v=1, J=2--> 1 survey of southern IRAS point sources. II. Detection of 74 new maser sources
The detection of 74 new southern stellar SiO, v=1, J=2->1 masersassociated with IRAS point sources is reported. 57 of these were foundin an IRAS based survey of oxygen rich stellar envelopes. The detectionrate in this survey was 45%. 17 further new maser sources were detectedduring a search for strong pointing sources for the Swedish-ESOSubmillimeter Telescope (SEST). The distribution of the IRAS lowresolution spectral (LRS) classes of all the SiO masers (this paper andliterature) peaks sharply at class 15. The distribution of the LRSclasses of the maser sources from 21 to 29 is similar to thedistribution of these classes of all the point sources in the pointsource catalogue except for class 25. Only few maser sources of thisspectral class are known. This is possibly explained by a selectioneffect.

A search for variability in the IRAS-LRS spectra of long period variables
Time-averaged IRAS-low resolution spectrometer (LRS) spectra have beenextensively used in the past for the study of mass loss in cool stars.Using the GEISHA system available at Groningen, we have extracted theraw LRS data for a sample of 40 mass losing asymptotic giant branch(AGB) stars. The selection was made on the basis of the number ofindividual spectra obtained by IRAS, the flux at 12 micrometers, an LRSclassification of 2n or 4n and a known association with an optical longperiod variable (Miras, Semiregulars). The spectra were analyzed inthree different ways, one of them being similar to the original LRSclassification scheme. Using spectra taken within 24 hours we estimatedthe internal accuracy of a single spectrum as a function of the 12micrometer flux. The spectra were then searched for variability in thesilicate and SiC dust features. Only one possible case of variabilitywas found. The results are discussed in terms of the pulsational andmass loss characteristics of our sample and other observational data oncircumstellar dust features.

Evolution from visual to infrared carbon stars: Interrupted mass-loss model
a set of self-consistent model calulations of the evolution from visualcarbon stars to infrared carbon stars is presented. A two-shell systemmodel, the interrurpted mass-loss model (oxygen-rich detached shell andnewly forming SiC dust shell), has been developed. This model overcomesthe shortcomings of the single detached-shell model (Chan and Kwok 1988)and the SiC shell model (Chan and Kwok 1990). A new mass-loss formula,which describes the gradually increasing mass-loss rate at the earlystage of the infrared carbon stars, is introduced to simulate the effectof the newly forming SiC shell. The model tracks successfully explain a'C' -shaped distribution of carbon stars in the color-color diagram. Theenergy distributions of approximately 110 transition objects are fittedwith devloping SiC dust shells using the interrupted mass-loss model.The existence of these transition objects with infrared propertiesintermediate between visual and infrared carbon stars, lends futhersupport to the idea of an evolutionary link between visual and infraredcabon stars.

A Study of Circumstellar Envelopes around Bright Carbon Stars. II. Molecular Abundances
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJS...87..305O&db_key=AST

A study of circumstellar envelopes around bright carbon stars. I - Structure, kinematics, and mass-loss rate.
Results are presented of a survey of circumstellar CO emission on asample of bright carbon stars, which is relatively complete out to about900 pc from the sun. A total of 68 detections were made. All objectswithin 600 pc of the sun were detected. It is suggested that the largemajority of all carbon stars have circumstellar envelopes. TheCO-emitting parts of these envelopes have angular sizes less than about15 arcsec. The median gas expansion velocity is 12.5 km/s, and theexpansion velocities for the majority of the objects fall in the range9-15 km/s. The median mass-loss rate is 1.5 x 10 exp -7 solar mass/yr,and the mass loss rate for the majority of stars lies within the narrowrange (0.8-2.5) x 10 exp -7 solar mass/yr. Circumstellar andphotospheric HCN, CN, and CS abundances are estimated and compared for asample for bright carbon stars. The chemistry in the envelope around RScl is determined.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Paon
Right ascension:21h24m16.70s
Declination:-69°44'03.0"
Apparent magnitude:6.41
Distance:362.319 parsecs
Proper motion RA:9.4
Proper motion Dec:-5.7
B-T magnitude:10.172
V-T magnitude:6.741

Catalogs and designations:
Proper Names
HD 1989HD 203133
TYCHO-2 2000TYC 9326-451-1
USNO-A2.0USNO-A2 0150-19823810
BSC 1991HR 8156
HIPHIP 105678

→ Request more catalogs and designations from VizieR