בית     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     תמונת אסטרו     האוסף     קבוצת דיון     Blog New!     שאלות נפוצות     כניסה  
The star is adopted or is not available for adoption  

α Ser (Unukalhai)


תוכן

תמונות

הוסף תמונה שלך

DSS Images   Other Images


מאמרים קשורים

Shapes of Spectral Line Bisectors for Cool Stars
The shape of the line bisector for the prototype spectral line Fe Iλ6253 was measured for an array of 54 stars on the cool half ofthe HR diagram. These bisectors are given in tables along with theirerrors. The classic C shape is shown by only a rather restricted rangein effective temperature and luminosity. The detailed change in bisectorshape with effective temperature and luminosity is documented moreprecisely than in previous work. The most blueward point on the bisectorchanges its height systematically with luminosity and can be used as aluminosity or gravity discriminant. The wide range of bisector shapescontains significant information about the velocity fields in theatmospheres of these stars, but extracting that information may requireextensive modeling.

Lifting the Iron Curtain: Toward an Understanding of the Iron Stars XX Oph and AS 325
We present new optical, near-infrared, and archival ultravioletobservations of XX Ophiuchi and AS 325, two proposed ``iron'' stars.These unusual stars have optical spectra dominated by emission linesarising from hydrogen, as well as ionized metals such as iron, chromium,and titanium. Both stars have been classified as ``iron'' stars, and anumber of exotic models have been presented for their origin. Using 2years of moderately high resolution optical spectroscopy, the first highsignal-to-noise ratio K-band spectroscopy of these sources (whichreveals stellar photospheric absorption lines), and new near-infraredinterferometric observations, we confirm that both systems are composedof two stars, likely binaries, containing a hot Be star with an evolvedlate-type secondary. The hydrogen emission features arise in the hotwind from the Be star, while the corresponding P-Cygni absorption linesare produced from dense material in the expanding, radiation-driven windaround each system. The optical Fe II emission lines are pumped byultraviolet Fe II absorption lines through fluorescence. Contrary tosome claims in the literature, the spectral features of XX Oph and AS325 are quite similar, evidence that they are comparable systems. Weexamine the variability of the spectral morphology and radial velocitymotions of both sources. We also study the variability of XX Oph duringa major photometric event and find that the spectral nature of thesystem varies during the event. A comparison of the velocity of theabsorption-line components in our new spectra with those in theliterature show that the structure of the stellar wind from XX Oph haschanged since the system was observed in 1951.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

UVBLUE: A New High-Resolution Theoretical Library of Ultraviolet Stellar Spectra
We present an extended ultraviolet-blue (850-4700 Å) library oftheoretical stellar spectral energy distributions computed at highresolution, λ/Δλ=50,000. The UVBLUE grid, as wenamed the library, is based on LTE calculations carried out with ATLAS9and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800entries that cover a large volume of the parameter space. It spans arange in Teff from 3000 to 50,000 K, the surface gravityranges from logg=0.0 to 5.0 with Δlogg=0.5 dex, while sevenchemical compositions are considered:[M/H]=-2.0,-1.5,-1.0,-0.5,+0.0,+0.3, and +0.5 dex. For its coverageacross the Hertzsprung-Russell diagram, this library is the mostcomprehensive one ever computed at high resolution in theshort-wavelength spectral range, and useful application can be foreseenfor both the study of single stars and in population synthesis models ofgalaxies and other stellar systems. We briefly discuss some relevantissues for a safe application of the theoretical output to ultravioletobservations, and a comparison of our LTE models with the non-LTE (NLTE)ones from the TLUSTY code is also carried out. NLTE spectra are found,on average, to be slightly ``redder'' compared to the LTE ones for thesame value of Teff, while a larger difference could bedetected for weak lines, which are nearly wiped out by the enhanced coreemission component in case of NLTE atmospheres. These effects seem to bemagnified at low metallicity (typically [M/H]<~-1). A match with aworking sample of 111 stars from the IUE atlas, with availableatmosphere parameters from the literature, shows that UVBLUE modelsprovide an accurate description of the main mid- and low-resolutionspectral features for stars along the whole sequence from the B to ~G5type. The comparison sensibly degrades for later spectral types, withsupergiant stars that are in general more poorly reproduced than dwarfs.As a possible explanation of this overall trend, we partly invoke theuncertainty in the input atmosphere parameters to compute thetheoretical spectra. In addition, one should also consider the importantcontamination of the IUE stellar sample, where the presence of binaryand variable stars certainly works in the sense of artificiallyworsening the match between theory and observations.

Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band
Infrared interferometry of supergiant and Mira stars has recently beenreinterpreted as revealing the presence of deep molecular layers.Empirical models for a photosphere surrounded by a simple molecularlayer or envelope have led to a consistent interpretation of previouslyinconsistent data. The stellar photospheres are found to be smaller thanpreviously understood, and the molecular layer is much higher and denserthan predicted by hydrostatic equilibrium. However, the analysis wasbased on spatial observations with medium-band optical filters, whichmixed the visibilities of different spatial structures. This paperreports spatial interferometry with narrow spectral bands, isolatingnear-continuum and strong molecular features, obtained for thesupergiant μ Cep. The measurements confirm strong variation ofapparent diameter across the K-band. A layer model shows that a stellarphotosphere of angular diameter 14.11±0.60 mas is surrounded by amolecular layer of diameter 18.56±0.26 mas, with an opticalthickness varying from nearly zero at 2.15 μm to >1 at 2.39 μm.Although μ Cep and α Ori have a similar spectral type,interferometry shows that they differ in their radiative properties.Comparison with previous broad-band measurements shows the importance ofnarrow spectral bands. The molecular layer or envelope appears to be acommon feature of cool supergiants.

First results from the ESO VLTI calibrators program
The ESO Very Large Telescope Interferometer (VLTI) is one of the leadinginterferometric facilities. It is equipped with several 8.2 and 1.8 mtelescopes, a large number of baselines up to 200 m, and with severalsubsystems designed to enable high quality measurements and to improvesignificantly the limits of sensitivities currently available tolong-baseline interferometry. The full scientific potential of the VLTIcan be exploited only if a consistent set of good quality calibrators isavailable. For this, a large number of observations of potentialcalibrators have been obtained during the commissioning phase of theVLTI. These data are publicly available. We briefly describe theinterferometer, the VINCI instrument used for the observations, the dataflow from acquisition to processed results, and we present and commenton the volume of observations gathered and scrutinized. The result is alist of 191 calibrator candidates, for which a total of 12 066observations can be deemed of satisfactory quality. We present a generalstatistical analysis of this sample, using as a starting point theangular diameters previously available in the literature. We derive thegeneral characteristics of the VLTI transfer function, and its trendwith time in the period 2001 through mid-2004. A second paper will bedevoted to a detailed investigation of a selected sample, aimed atestablishing a VLTI-based homogeneous system of calibrators.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Improved Baade-Wesselink surface brightness relations
Recent, and older accurate, data on (limb-darkened) angular diameters iscompiled for 221 stars, as well as BVRIJK[12][25] magnitudes for thoseobjects, when available. Nine stars (all M-giants or supergiants)showing excess in the [12-25] colour are excluded from the analysis asthis may indicate the presence of dust influencing the optical andnear-infrared colours as well. Based on this large sample,Baade-Wesselink surface brightness (SB) relations are presented fordwarfs, giants, supergiants and dwarfs in the optical and near-infrared.M-giants are found to follow different SB relations from non-M-giants,in particular in V versus V-R. The preferred relation for non-M-giantsis compared to the earlier relation by Fouqué and Gieren (basedon 10 stars) and Nordgren et al. (based on 57 stars). Increasing thesample size does not lead to a lower rms value. It is shown that theresiduals do not correlate with metallicity at a significant level. Thefinally adopted observed angular diameters are compared to thosepredicted by Cohen et al. for 45 stars in common, and there isreasonable overall, and good agreement when θ < 6 mas.Finally, I comment on the common practice in the literature to average,and then fix, the zero-point of the V versus V-K, V versus V-R and Kversus J-K relations, and then rederive the slopes. Such a commonzero-point at zero colour is not expected from model atmospheres for theV-R colour and depends on gravity. Relations derived in this way may bebiased.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Unveiling Mira stars behind the molecules. Confirmation of the molecular layer model with narrow band near-infrared interferometry
We have observed Mira stars with the FLUOR beamcombiner on the IOTAinterferometer in narrow bands around 2.2 μm wavelength. We findsystematically larger diameters in bands contaminated by water vapor andCO. The visibility measurements can be interpreted with a modelcomprising a photosphere surrounded by a thin spherical molecular layer.The high quality of the fits we obtain demonstrates that this simplemodel accounts for most of the star's spatial structure. For each starand each period we were able to derive the radius and temperature of thestar and of the molecular layer as well as the optical depth of thelayer in absorption and continuum bands. The typical radius of themolecular layer is 2.2 R* with a temperature ranging between1500 and 2100 K. The photospheric temperatures we find are in agreementwith spectral types of Mira stars. Our photospheric diameters are foundsmaller than in previous studies by several tens of percent. We believeprevious diameters were biased by the use of unsuited geometrical modelsto explain visibilities. The conclusions of this work are various.First, we offer a consistent view of Mira stars over a wide range ofwavelengths. Second, the parameters of the molecular layer we find areconsistent with spectroscopic studies. Third, from our diametermeasurements we deduce that all Mira stars are fundamental modepulsators and that previous studies leading to the conclusion of thefirst-overtone mode were biased by too large diameter estimates.Based on observations collected at the IOTA interferometer, WhippleObservatory, Mount Hopkins, Arizona.Table 3 is only available in electronic form athttp://www.edpsciences.org

Oxygen isotopic ratios in first dredge-up red giant stars and nuclear reaction rate uncertainties revisited
We describe a general yet simple method to analyse the propagation ofnuclear reaction rate uncertainties in a stellar nucleosynthesis andmixing context. The method combines post-processing nucleosynthesis andmixing calculations with a Monte Carlo scheme. With this approach wereanalyse the dependence of theoretical oxygen isotopic ratiopredictions in first dredge-up red giant branch stars in a systematicway. Such predictions are important to the interpretation of pre-solarAl2O3 grains from meteorites. The reaction rateswith uncertainties were taken from the NACRE compilation of Angulo etal. We include seven reaction rates in our systematic analysis ofstellar models with initial masses from 1 to 3 Msolar. Wefind that the uncertainty of the 18O(p,α)15N reaction rate typically causes an error in thetheoretical 16O/18O ratio of ~= +20/ - 5 per cent.The error of the 16O/17O prediction is 10-40 percent depending on the stellar mass, and is persistently dominated by thecomparatively small uncertainty of the 16O(p,γ)17F reaction. With the new estimates on reaction rateuncertainties by the NACRE compilation, the p-capture reactions17O(p, α)14N and 17O(p,γ)18F have virtually no impact on theoreticalpredictions for stellar mass <=1.5 Msolar. However, theuncertainty in 17O(p, α)14N has an effectcomparable to or greater than that of 16O(p,γ)17F for masses >1.5 Msolar, where coremixing and subsequent envelope mixing interact. In these cases wherecore mixing complicates post-dredge-up surface abundances, uncertaintyin other reactions have a secondary but noticeable effect on surfaceabundances.

Angular Diameters of Stars from the Mark III Optical Interferometer
Observations of 85 stars were obtained at wavelengths between 451 and800 nm with the Mark III Stellar Interferometer on Mount Wilson, nearPasadena, California. Angular diameters were determined by fitting auniform-disk model to the visibility amplitude versus projected baselinelength. Half the angular diameters determined at 800 nm have formalerrors smaller than 1%. Limb-darkened angular diameters, effectivetemperatures, and surface brightnesses were determined for these stars,and relationships between these parameters are presented. Scatter inthese relationships is larger than would be expected from themeasurement uncertainties. We argue that this scatter is not due to anunderestimate of the angular diameter errors; whether it is due tophotometric errors or is intrinsic to the relationship is unresolved.The agreement with other observations of the same stars at the samewavelengths is good; the width of the difference distribution iscomparable to that estimated from the error bars, but the wings of thedistribution are larger than Gaussian. Comparison with infraredmeasurements is more problematic; in disagreement with models, coolerstars appear systematically smaller in the near-infrared than expected,warmer stars larger.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere
We present the results of 8 yr of infrared photometric monitoring of alarge sample of stars visible from Teide Observatory (Tenerife, CanaryIslands). The final archive is made up of 10,949 photometric measuresthrough a standard InSb single-channel photometer system, principally inJHK, although some stars have measures in L'. The core of this list ofstars is the standard-star list developed for the Carlos SánchezTelescope. A total of 298 stars have been observed on at least twooccasions on a system carefully linked to the zero point defined byVega. We present high-precision photometry for these stars. The medianuncertainty in magnitude for stars with a minimum of four observationsand thus reliable statistics ranges from 0.0038 mag in J to 0.0033 magin K. Many of these stars are faint enough to be observable with arraydetectors (42 are K>8) and thus to permit a linkage of the bright andfaint infrared photometric systems. We also present photometry of anadditional 25 stars for which the original measures are no longeravailable, plus photometry in L' and/or M of 36 stars from the mainlist. We calculate the mean infrared colors of main-sequence stars fromA0 V to K5 V and show that the locus of the H-K color is linearlycorrelated with J-H. The rms dispersion in the correlation between J-Hand H-K is 0.0073 mag. We use the relationship to interpolate colors forall subclasses from A0 V to K5 V. We find that K and M main-sequence andgiant stars can be separated on the color-color diagram withhigh-precision near-infrared photometry and thus that photometry canallow us to identify potential mistakes in luminosity classclassification.

Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars
This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org

The Wilson-Bappu effect: A tool to determine stellar distances
Wilson & Bappu (\cite{orig}) have shown the existence of aremarkable correlation between the width of the emission in the core ofthe K line of Ca II and the absolute visual magnitude of late-typestars.Here we present a new calibration of the Wilson-Bappu effect based on asample of 119 nearby stars. We use, for the first time, widthmeasurements based on high resolution and high signal to noise ratio CCDspectra and absolute visual magnitudes from the Hipparcos database.Our primary goal is to investigate the possibility of using theWilson-Bappu effect to determine accurate distances to single stars andgroups.The result of our calibration fitting of the Wilson-Bappu relationshipis MV=33.2-18.0 log W0, and the determinationseems free of systematic effects. The root mean square error of thefitting is 0.6 mag. This error is mostly accounted for by measurementerrors and intrinsic variability of W0, but in addition apossible dependence on the metallicity is found, which becomes clearlynoticeable for metallicities below [Fe/H] ~ -0.4. This detection ispossible because in our sample [Fe/H] ranges from -1.5 to 0.4.The Wilson-Bappu effect can be used confidently for all metallicitiesnot lower than ~ -0.4, including the LMC. While it does not provideaccurate distances to single stars, it is a useful tool to determineaccurate distances to clusters and aggregates, where a sufficient numberof stars can be observed.We apply the Wilson-Bappu effect to published data of the open cluster M67; the retrieved distance modulus is of 9.65 mag, in very goodagreement with the best distance estimations for this cluster, based onmain sequence fitting.Observations collected at ESO, La Silla.

Line Absorption as a Metallicity Index for Giant Stars
The fraction of light removed from a star's spectrum by the spectrallines, the line absorption, is shown to be a precise empirical indicatorof metallicity. We measured the line absorption in 89 class III giantstars in a 42.5 Å window between 6219.0 and 6261.5 Å andthen calibrated these values against published metallicities. We showthat the line absorption can be measured precisely enough to improve themetallicity precision about fivefold over the original calibrationmetallicities, reaching a precision of 0.01 dex in favorable cases.

On the Abundance of Potassium in Metal-Poor Stars
Based on extensive statistical-equilibrium calculations, we performed anon-LTE analysis of the K I 7699 equivalent-width data ofmetal-deficient stars for the purpose of clarifying the behavior of thephotospheric potassium abundance in disk/halo stars. While the resultingnon-LTE abundance corrections turned out to be considerably large,amounting to 0.2-0.7dex, their effect on the [K/Fe] vs. [Fe/H] relationis not very important, since these corrections do not show anysignificant dependence on the metallicity. Hence, we again confirmed theresults of previous LTE studies, that [K/Fe] shows a gradual systematicincrease toward a lowered metallicity up to [K/Fe] ~ 0.3 - 0.5 at[Fe/H]} ~ -1 to -2, such as in the case of αelements.

Search for the General Magnetic Fields in Late-Type Giants
Surface-averaged longitudinal magnetic-field components (by analogy withthe Sun called the general magnetic field) have been measured for 15late-type giants with an accuracy of several Gauss. Statisticallysignificant fields were detected for nine of these stars. Themagnetic-field values obtained suggest the existence of general magneticfields in these giants.

Spectroscopic Study of IRAS 19285+0517 (PDS 100): A Rapidly Rotating Li-Rich K Giant
We report on photometry and high-resolution spectroscopy for IRAS19285+0517. The spectral energy distribution based on visible andnear-infrared photometry and far-infrared fluxes shows that the star issurrounded by dust at a temperature of Td~250 K. Spectralline analysis shows that the star is a K giant with a projectedrotational velocity of vsini=9+/-2 km s-1. We determined theatmospheric parameters: Teff=4500 K, logg=2.5,ξt=1.5 km s-1, and [Fe/H]=0.14 dex. The LTEabundance analysis shows that the star is Li-rich[logɛ(Li)=2.5+/-0.15], but with essentially normal C, N, O, andmetal abundances. Spectral synthesis of molecular CN lines yields thecarbon isotopic ratio 12C/13C=9+/-3, a signatureof post-main-sequence evolution and dredge-up on the red giant branch(RGB). Analysis of the Li resonance line at 6707 Å for different6Li/7Li ratios shows that the Li profile can bebest fitted with a predicted profile for pure 7Li.Far-infrared excess, high Li abundance, and rapid rotation suggest thata planet has been swallowed or, perhaps, that an instability in the RGBouter layers triggered a sudden enrichment of Li and caused mass loss.

A catalogue of calibrator stars for long baseline stellar interferometry
Long baseline stellar interferometry shares with other techniques theneed for calibrator stars in order to correct for instrumental andatmospheric effects. We present a catalogue of 374 stars carefullyselected to be used for that purpose in the near infrared. Owing toseveral convergent criteria with the work of Cohen et al.(\cite{cohen99}), this catalogue is in essence a subset of theirself-consistent all-sky network of spectro-photometric calibrator stars.For every star, we provide the angular limb-darkened diameter, uniformdisc angular diameters in the J, H and K bands, the Johnson photometryand other useful parameters. Most stars are type III giants withspectral types K or M0, magnitudes V=3-7 and K=0-3. Their angularlimb-darkened diameters range from 1 to 3 mas with a median uncertaintyas low as 1.2%. The median distance from a given point on the sky to theclosest reference is 5.2degr , whereas this distance never exceeds16.4degr for any celestial location. The catalogue is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/183

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

New algorithms for reducing cross-dispersed echelle spectra
We describe advanced image processing algorithms, implemented in a dataanalysis package for conventional and cross-dispersed echelle spectra.Comparisons with results from other packages illustrate the outstandingquality of the new REDUCE package, particularly in terms of resultingnoise level and treatment of CCD defects and cosmic ray spikes. REDUCEcan be adapted relatively easily to handle a variety of instrumenttypes, including spectrographs with prism or grating cross-dispersers,possibly fed by a fiber or image slicer, etc. In addition to reducedspectra, an accurate spatial profile is recovered, providing valuableinformation about the spectrograph PSF and simplifying scattered lightcorrections. Based on data obtained with the VLT UVES and SAAO Giraffespectrometers.

Lick Spectral Indices for Super-Metal-rich Stars
We present Lick spectral indices for a complete sample of 139 candidatesuper-metal-rich stars of different luminosity classes (MK type from Ito V). For 91 of these stars we were able to identify, in anaccompanying paper, the fundamental atmosphere parameters. This confirmsthat at least 2/3 of the sample consists of stars with [Fe/H] in excessof +0.1 dex. Optical indices for both observations and fiducialsynthetic spectra have been calibrated to the Lick system according toWorthey et al. and include the Fe I indices of Fe5015, Fe5270, andFe5335 and the Mg I and MgH indices of Mg2 and Mg b at 5180Å. The internal accuracy of the observations is found to beσ(Fe5015)=+/-0.32 Å, σ(Fe5270)=+/-0.19 Å,σ(Fe5335)=+/-0.22 Å, σ(Mg2)=+/-0.004 mag,and σ(Mg b)=+/-0.19 Å. This is about a factor of 2 betterthan the corresponding theoretical indices from the synthetic spectra,the latter being a consequence of the intrinsic limitations in the inputphysics, as discussed by Chavez et al. By comparing models andobservations, we find no evidence for nonstandard Mg versus Fe relativeabundance, so [Mg/Fe]=0, on the average, for our sample. Both theWorthey et al. and Buzzoni et al. fitting functions are found tosuitably match the data and can therefore confidently be extended forpopulation synthesis application also to supersolar metallicity regimes.A somewhat different behavior of the two fitting sets appears, however,beyond the temperature constraints of our stellar sample. Its impact onthe theoretical output is discussed, as far as the integratedMg2 index is derived from synthesis models of stellaraggregates. A two-index plot, such as Mg2 versus Fe5270, isfound to provide a simple and powerful tool for probing distinctiveproperties of single stars and stellar aggregates as a whole. The majoradvantage, over a classical CM diagram, is that it is both reddeningfree and distance independent. Based on observations collected at theInstituto Nacional de Astrofísica, Optica y Electrónica(INAOE) ``G. Haro'' Observatory, Cananea (Mexico).

Line-Depth Ratios: Temperature Indices for Giant Stars
Ratios of the depths of appropriately chosen spectral lines are shown tobe excellent indicators of stellar temperatures for giant stars in theG3 to K3 spectral type range. We calibrate five line-depth ratiosagainst B-V and R-I color indices and then translate these intotemperatures. Our goal is to set up line-depth ratios to (1) accuratelymonitor any temperature variations of a few degrees or less that mayoccur during magnetic cycles or oscillations and (2) rank giantsprecisely on a temperature coordinate. This is not an absolutecalibration of stellar temperatures. We show how giant spectra can bemisleading because of the complex dependences of spectral lines onmetallicity and absolute magnitude as well as temperature, and it isessential to make corrections to accommodate these complications. Thefive line-depth ratios we use yield precision for monitoring, i.e.,detecting temperature variations, of 4 K from a single exposure. Rankinggiants by temperature can be done with errors of ~25 K but could beimproved with better determinations of the metallicity andabsolute-magnitude corrections.

Comparison of Stellar Angular Diameters from the NPOI, the Mark III Optical Interferometer, and the Infrared Flux Method
The Navy Prototype Optical Interferometer (NPOI) has been used tomeasure the angular diameters of 41 late-type giant and supergiant starspreviously observed with the Mark III optical interferometer. Sixteen ofthese stars have published angular diameters based on model atmospheres(infrared flux method, IRFM). Comparison of these angular diametersshows that there are no systematic offsets between any pair of datasets. Furthermore, the reported uncertainties in the angular diametersmeasured using both interferometers are consistent with the distributionof the differences in the diameters. The distribution of diameterdifferences between the interferometric and model atmosphere angulardiameters are consistent with uncertainties in the IRFM diameters of1.4%. Although large differences in angular diameter measurements areseen for three stars, the data are insufficient to determine whetherthese differences are due to problems with the observations or are dueto temporal changes in the stellar diameters themselves.

הכנס מאמר חדש


לינקים קשורים

  • - לא נמצאו לינקים -
הכנס לינק חדש


משמש של הקבוצה הבאה


תצפית ומידע אסטרומטרי

קבוצת-כוכבים:נחש
התרוממות ימנית:15h44m16.10s
סירוב:+06°25'32.0"
גודל גלוי:2.65
מרחק:22.452 פארסק
תנועה נכונה:0
תנועה נכונה:0
B-T magnitude:4.142
V-T magnitude:2.739

קטלוגים וכינוים:
שם עצם פרטיUnukalhai
Bayerα Ser
Flamsteed24 Ser
HD 1989HD 140573
TYCHO-2 2000TYC 363-1135-1
USNO-A2.0USNO-A2 0900-08211028
BSC 1991HR 5854
HIPHIP 77070

→ הזמן עוד קטלוגים וכינוים מוזיר