Főoldal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Bejelentkezés  
→ Adopt this star  

80 Leo


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Rotation- and temperature-dependence of stellar latitudinal differential rotation
More than 600 high resolution spectra of stars with spectral type F andlater were obtained in order to search for signatures of differentialrotation in line profiles. In 147 stars the rotation law could bemeasured, with 28 of them found to be differentially rotating.Comparison to rotation laws in stars of spectral type A reveals thatdifferential rotation sets in at the convection boundary in theHR-diagram; no star that is significantly hotter than the convectionboundary exhibits the signatures of differential rotation. Four lateA-/early F-type stars close to the convection boundary and at v sin{i}≈ 100 km s-1 show extraordinarily strong absolute shear atshort rotation periods around one day. It is suggested that this is dueto their small convection zone depth and that it is connected to anarrow range in surface velocity; the four stars are very similar inTeff and v sin{i}. Detection frequencies of differentialrotation α = ΔΩ/Ω > 0 were analyzed in starswith varying temperature and rotation velocity. Measurable differentialrotation is more frequent in late-type stars and slow rotators. Thestrength of absolute shear, ΔΩ, and differential rotationα are examined as functions of the stellar effective temperatureand rotation period. The highest values of ΔΩ are found atrotation periods between two and three days. In slower rotators, thestrongest absolute shear at a given rotation rateΔΩmax is given approximately byΔΩmax ∝ P-1, i.e.,αmax ≈ const. In faster rotators, bothαmax and ΔΩmax diminish lessrapidly. A comparison with differential rotation measurements in starsof later spectral type shows that F-stars exhibit stronger shear thancooler stars do and the upper boundary in absolute shear ΔΩwith temperature is consistent with the temperature-scaling law found inDoppler Imaging measurements.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

A Theoretical γ Doradus Instability Strip
In this paper, we present the first theoretical γ Doradusinstability strip. We find that our model instability strip agrees verywell with the previously established, observationally based, instabilitystrip of Handler & Shobbrook. We stress, as do Guzik et al., thatthe convection zone depth plays the major role in the determination ofour instability strip. Once this depth becomes too deep or too shallow,the convection zone no longer allows for pulsational instability. Ourtheoretical γ Dor instability strip is bounded by ~6850 and 7360 Kat the red and blue edge, respectively, on the zero-age main sequenceand by ~6560 and 7000 K at the red and blue edge, respectively,approximately 2 mag more luminous. This theoretical strip, transformedto the observer's color-magnitude diagram, overlays the region wheremost of the 30 bona fide γ Dor stars are found.

A Dozen New γ Doradus Stars
We use new high-dispersion spectroscopic and precise photometricobservations to identify 12 new γ Doradus stars. Two of the 12systems are double-lined binaries that show obvious velocityvariability. Five other stars have metallic lines with compositeprofiles characterized by a narrow feature near the center of each broadcomponent. Spectrograms of the Hα line indicate that all fivestars are binaries rather than shell stars. The remaining five stars inour sample are probably single. All 12 stars are photometricallyvariable with amplitudes between 6 and 87 mmag in Johnson B and periodsbetween 0.3 and 1.2 days. Four stars are monoperiodic; the rest havebetween two and five independent periods. The variability at all periodsapproximates a sinusoid. Although many of the stars lie within theδ Scuti instability strip, none exhibit the higher frequencyvariability seen in δ Scuti stars. We have increased the sample ofknown γ Doradus stars by 40% and revised the positions of a numberof variables in the H-R diagram by accounting for duplicity. Our list of42 confirmed γ Doradus variables gives some of their properties.All are dwarfs or subgiants and lie within a well-defined region of theH-R diagram that overlaps the cool edge of the δ Scuti instabilitystrip. We compare the observed location of the γ Doradus variableswith a recently published theoretical γ Doradus instability stripand find good agreement.

Differential rotation in rapidly rotating F-stars
We obtained high quality spectra of 135 stars of spectral types F andlater and derived ``overall'' broadening functions in selectedwavelength regions utilizing a Least Squares Deconvolution (LSD)procedure. Precision values of the projected rotational velocity v \siniwere derived from the first zero of the Fourier transformed profiles andthe shapes of the profiles were analyzed for effects of differentialrotation. The broadening profiles of 70 stars rotating faster than v\sini = 45 km s-1 show no indications of multiplicity nor ofspottedness. In those profiles we used the ratio of the first two zerosof the Fourier transform q_2/q_1 to search for deviations from rigidrotation. In the vast majority the profiles were found to be consistentwith rigid rotation. Five stars were found to have flat profilesprobably due to cool polar caps, in three stars cuspy profiles werefound. Two out of those three cases may be due to extremely rapidrotation seen pole on, only in one case (v \sini = 52 km s-1)is solar-like differential rotation the most plausible explanation forthe observed profile. These results indicate that the strength ofdifferential rotation diminishes in stars rotating as rapidly as v \sini>~ 50 km s-1.Table A.1 is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813Based on observations collected at the European Southern Observatory, LaSilla, 69.D-0015(B).

On the link between rotation, chromospheric activity and Li abundance in subgiant stars
The connection rotation-CaII emission flux-lithium abundance is analyzedfor a sample of bona fide subgiant stars, with evolutionary statusdetermined from HIPPARCOS trigonometric parallax measurements and fromthe Toulouse-Geneva code. The distribution of rotation and CaII emissionflux as a function of effective temperature shows a discontinuitylocated around the same spectral type, F8IV. Blueward of this spectraltype, subgiants have a large spread of values of rotation and CaII flux,whereas stars redward of F8IV show essentially low rotation and low CaIIflux. The strength of these declines depends on stellar mass. Theabundance of lithium also shows a sudden decrease. For subgiants withmass lower than about 1.2 Msun the decrease is located laterthan that in rotation and CaII flux, whereas for masses higher than 1.2Msun the decrease in lithium abundance is located around thespectral type F8IV. The discrepancy between the location of thediscontinuities of rotation and CaII emission flux and log n(Li) forstars with masses lower than 1.2 Msun seems to reflect thesensitivity of these phenomena to the mass of the convective envelope.The drop in rotation, which results mostly from a magnetic braking,requires an increase in the mass of the convective envelope less thanthat required for the decrease in log n(Li). The location of thediscontinuity in log n(Li) for stars with masses higher than 1.2Msun, in the same region of the discontinuities in rotationand CaII emission flux, may also be explained by the behavior of thedeepening of the convective envelope. The more massive the star is, theearlier is the increase of the convective envelope. In contrast to therelationship between rotation and CaII flux, which is fairly linear, therelationship between lithium abundance and rotation shows no cleartendency toward linear behavior. Similarly, no clear linear trend isobserved in the relationship between lithium abundance and CaII flux. Inspite of these facts, subgiants with high lithium content also have highrotation and high CaII emission flux.

Six New γ Doradus Stars
We present high-resolution spectroscopy and precision photometry of sixnew γ Doradus stars, one of which was independently discovered byanother group. This brings the total number of confirmed γ Doradusvariables to 30. All six of these variables fall in the spectral classrange F0-F2 all but one are subgiants. The six stars have between oneand five photometric periods in the range 0.3-1.2 days. We find noevidence for higher frequency δ Scuti pulsations in any of thesesix stars. Our spectroscopic observations reveal HD 108100 to be thefirst confirmed γ Doradus variable with composite broad and narrowline profiles suggesting the presence of a circumstellar shell or disk.HD 221866 has the most asymmetric absorption lines of the six stars inthis paper and also the largest photometric amplitude. Most of the 30confirmed γ Doradus variables lie in a fairly tight region of theH-R diagram on or just above the main sequence that partially overlapsthe cool edge of the δ Scuti instability strip. However, threestars, including two of the new variables in this paper, are subgiantsthat lie well within the δ Scuti strip. Among the 30 confirmedγ Doradus variables, we find no correlation between thephotometric periods and intrinsic color, absolute magnitude, orluminosity.

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

Fundamental properties of the open cluster NGC 2355
NGC 2355 is an old open cluster in the outer part of the galactic disk(l=203fdg4 , b=+11fdg8 ) which has been little studied until now. Thispaper presents the first astrometric and spectroscopic investigation ofthis cluster. We have measured precise absolute proper motions from oldCarte du Ciel plates, POSS-I plates and recent CCD observations obtainedwith the Bordeaux meridian circle. The proper motion data reveal 38highly probable cluster members down to Blim = 15 mag within7' of the cluster center. We have also obtained ELODIE high resolutionspectra for 24 stars. Seventeen of them are confirmed to be members ofthe cluster on the basis of radial velocity. Eight of them are fastrotating turnoff stars for which the projected rotational velocity hasbeen determined. The spectroscopic observations have also providedestimates of the physical parameters Teff, log g, {[Fe/H]},MV of the 24 target stars. Two stragglers have beenidentified in the cluster. Combining our astrometric and spectroscopicresults with previous UBV photometry and recent JHK_s photometry fromthe 2MASS survey we have derived the fundamental properties of thecluster: metallicity, age, distance, size, spatial velocity and orbit.Based on observations made on the 193cm telescope at the Haute-ProvenceObservatory, France, and on plate digitisation at the Centre d'Analysedes Images, Paris. This publication makes use of data products from theTwo Micron All Sky Survey, which is a joint project of the University ofMassachusetts and the Infrared Processing and Analysis Center, funded bythe National Aeronautics and Space Administration and the NationalScience Foundation.

The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity
Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Magnetic structure in cool stars. XV - The evolution of rotation rates and chromospheric activity of giants
For cool giants and subgiants the observed dependence of rotationalvelocity and Ca II H and K line-core emission on color B-V isinterpreted in terms of changes in the moment of inertia by stellarevolution. Modeling of the rotational velocity during the evolution ofcool giants with masses between 2.0 and 3.0 solar masses, by taking intoaccount the change in the moment of inertia and assuming rigid-bodyrotation and conservation of angular momentum, describes the observeddecrease of v sin i with B-V. The computed evolution of the rotationalvelocity, together with the empirical relation between the Ca IIline-core emission and the rotation rate, explain the observed drop inthe Ca II line-core emission for giants at B-V = about 0.95. Forsubgiants with masses of about 1.5 solar mass, the change in the momentof inertia by itself cannot explain the observed v sin i distribution:there are indications of loss of angular momentum, presumably bymagnetic braking.

Absolute luminosity calibration of F stars
Luminosity calibrations are performed for a restricted sample of 706F-type field stars of all luminosity classes and a similarly restrictedsample of 251 main-sequence F stars. The samples are restricted withrespect to values of photometric and metallicity indices, propermotions, radial velocities, and apparent magnitudes. Both linear andsecond-order relations between absolute magnitude and the photometricindices beta, /c1/ or (b-y), /c1/ are considered.These relations are calibrated by the statistical parallax method basedon the principle of maximum likelihood. The possible effect ofinterstellar absorption on the calibration results is investigated alongwith an effect of a photometric correction to the absolute magnitudes.The results obtained are compared with those of Crawford (1975) as wellas with the trigonometric parallaxes. The coefficients of thecalibration relations are derived from the trigonometric parallaxes, andpoor agreement is indicated. It is concluded that the trigonometricparallaxes must be used very carefully and only for nearby stars.

Spectral classification of the bright F stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88...95C&db_key=AST

Rotation of evolving A and F stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972A&A....18..428D&db_key=AST

Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Oroszlán
Rektaszcenzió:11h25m50.00s
Deklináció:+03°51'36.0"
Vizuális fényesség:6.37
Távolság:61.425 parszek
RA sajátmozgás:-80.5
Dec sajátmozgás:-35.4
B-T magnitude:6.753
V-T magnitude:6.395

Katalógusok és elnevezések:
Megfelelő nevek
Flamsteed80 Leo
HD 1989HD 99329
TYCHO-2 2000TYC 267-1190-1
USNO-A2.0USNO-A2 0900-06925731
BSC 1991HR 4410
HIPHIP 55791

→ További katalógusok és elnevezések lekérése VizieR-ből