Főoldal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Bejelentkezés  
→ Adopt this star  

9 Cet


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Metallicity, debris discs and planets
We investigate the populations of main-sequence stars within 25 pc thathave debris discs and/or giant planets detected by Doppler shift. Themetallicity distribution of the debris sample is a very close match tothat of stars in general, but differs with >99 per cent confidencefrom the giant planet sample, which favours stars of above averagemetallicity. This result is not due to differences in age of the twosamples. The formation of debris-generating planetesimals at tens of authus appears independent of the metal fraction of the primordial disc,in contrast to the growth and migration history of giant planets withina few au. The data generally fit a core accumulation model, with outerplanetesimals forming eventually even from a disc low in solids, whileinner planets require fast core growth for gas to still be present tomake an atmosphere.

Spectral synthesis analysis and radial velocity study of the northern F-, G- and K-type flare stars
In this paper, we present a study of the general physical and chemicalproperties and radial velocity monitoring of young active stars. Wederive temperatures, logg, [Fe/H], v sini and Rspec valuesfor eight stars. The detailed analysis reveals that the stars are nothomogeneous in their principal physical parameters or in the agedistribution. In 4/5, we found a periodic radial velocity signal whichoriginates in surface features; the fifth is surprisingly inactive andshows little variation.

The dependence of the Rossby number and XUV-Lyα emission flux with age for solar-like G-type stars
Stellar parameters of 11 G-type stars with ages ranging from 0.1 to 8.5Gyr, from the Sun in Time programme, were used to compute the Rossbynumber, ℜ, for each star. The Rossby number for each star wascalculated from the rotation period and the convective overturn timederived from spectral type (B-V). It was found to vary essentially ast0.5, where t is the stellar age in Gyr. The Rossby number isused as an index of X-ray-ultraviolet (XUV) (1-1200 Å) andLyα activity, defined as the ratio of the total emission flux inthese spectral regions to the total bolometric emission. Expressions forthe ratio of the stellar surface XUV and Lyα emission fluxrelative to present mean solar surface flux values are given in terms ofℜ. It is shown that the observed activity in these stars varies asℜ-β, where β takes values of 2.5 and 1.5 forXUV and Lyα, respectively. Expressions for deriving the Rossbynumber from B-V and age are also given. Thus, one can use the stellarB-V and effective temperature variation with age to calculate the XUVand Lyα emission flux relative to present solar values. As anexample, the evolution of the solar XUV and Lyα with age from 0.1to 8.5 Gyr is given. The variation of the stellar ultraviolet flux withage can be used in photochemical models to study the evolution ofplanetary atmospheres orbiting such stars.

A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys,Dione, Rhea, and Hyperion, 1.0 2.5 μm, with data extending to shorter(Mimas and Enceladus) and longer (Rhea and Dione) wavelengths forcertain objects. The spectral resolution (R=λ/Δλ) ofthe data shown here is in the range 800 1000, depending on the specificinstrument and configuration used; this is higher than the resolution(R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometeron the Cassini spacecraft. All of the spectra are dominated by water iceabsorption bands and no other features are clearly identified. Spectraof all of these satellites show the characteristic signature ofhexagonal H2O ice at 1.65 μm. We model the leadinghemisphere of Rhea in the wavelength range 0.3 3.6 μm with the Hapkeand the Shkuratov radiative transfer codes and discuss the relativemerits of the two approaches to fitting the spectrum. In calculationswith both codes, the only components used are H2O ice, whichis the dominant constituent, and a small amount of tholin (Ice TholinII). Tholin in small quantities (few percent, depending on the mixingmechanism) appears to be an essential component to give the basic redcolor of the satellite in the region 0.3 1.0 μm. The quantity andmode of mixing of tholin that can produce the intense coloration of Rheaand other icy satellites has bearing on its likely presence in manyother icy bodies of the outer Solar System, both of high and lowgeometric albedos. Using the modeling codes, we also establish detectionlimits for the ices of CO2 (a few weight percent, dependingon particle size and mixing), CH4 (same), andNH4OH (0.5 weight percent) in our globally averaged spectraof Rhea's leading hemisphere. New laboratory spectral data forNH4OH are presented for the purpose of detection on icybodies. These limits for CO2, CH4, andNH4OH on Rhea are also applicable to the other icy satellitesfor which spectra are presented here. The reflectance spectrum ofHyperion shows evidence for a broad, unidentified absorption bandcentered at 1.75 μm.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

A Spitzer Study of Dusty Disks around Nearby, Young Stars
We have obtained Spitzer Space Telescope MIPS (Multiband ImagingPhotometer for Spitzer) observations of 39 A- through M-type dwarfs,with estimated ages between 12 and 600 Myr; IRAC observations for asubset of 11 stars; and follow-up CSO SHARC II 350 μm observationsfor a subset of two stars. None of the objects observed with IRACpossess infrared excesses at 3.6-8.0 μm however, seven objectsobserved with MIPS possess 24 and/or 70 μm excesses. Four objects(κ Phe, HD 92945, HD 119124, and AU Mic), with estimated ages12-200 Myr, possess strong 70 μm excesses, >=100% larger thantheir predicted photospheres, and no 24 μm excesses, suggesting thatthe dust grains in these systems are cold. One object (HD 112429)possesses moderate 24 and 70 μm excesses with a color temperature,Tgr=100 K. Two objects (α1 Lib and HD177724) possess such strong 24 μm excesses that their 12, 24, and 70μm fluxes cannot be self-consistently modeled using a modifiedblackbody despite a 70 μm excess >2 times greater than thephotosphere around α1 Lib. The strong 24 μm excessesmay be the result of emission in spectral features, as observed towardthe Hale-Bopp star HD 69830.

Predicting the Length of Magnetic Cycles in Late-Type Stars
In this paper we present a modification of a local approximation of theso-called interface dynamo in an attempt to reproduce the length of themagnetic cycles for a sample of late-type stars. The sample consists of25 stars, observed during the Mount Wilson and Las Campanas long-termmonitoring campaigns, for which well-defined cycles have been detected.We have focused our efforts on reproducing general trends observed,namely, the dependence of the cycle length, Pcyc, on thestellar rotation period, Prot, rather than attempting toinfer from the dynamo model individual cycle lengths for each star. Inspite of the simplicity of the model, the results are promising. Thetrend of increasing cycle length with increasing rotation period isreproduced with a minimum of assumptions.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Spots, activity cycles, and differential rotation on cool stars
The first results are reported from a search for activity cycles instars similar to the sun based on modelling their spotting with analgorithm developed at the Crimean Astrophysical Observatory. Of themore than thirty program stars, 10 manifested a cyclical variation intheir central latitudes and total starspot area. The observed cycleshave durations of 4-15 years, i.e., analogous to the 11 year Schwabesunspot cycle. Most of the stars have a rough analog of the solarbutterfly pattern, with a reduction in the average latitude of the spotsas their area increases. A flip-flop effect during the epoch of themaximum average latitude is noted in a number of these objects (e.g.,the analog LQ Hya of the young sun or the RS CVn-type variable V711Tau), as well as a reduction in the photometric rotation period of astar as the spots drift toward the equator, an analog of thedifferential rotation effect in the sun. Unlike in the sun, the observedspot formation cycles do not correlate uniquely with other indicators ofactivity— chromospheric emission in the CaII HK lines (Be Cet, EKDra, Dx Leo), H line emission (LQ Hya, VY Ari, EV Lac), or cyclicalflare activity (EV Lac). In V833 Tau, BY Dra, EK Dra, and VY Ari shortSchwabe cycles coexist with long cycles that are analogous to theGleissberg solar cycle, in which the spotted area can approach half theentire area of the star.

Stellar activity cycles: observing the dynamo?
The enormous complexity of the atmospheric structure observed on the Sunmakes it very difficult to compare the Sun with ``solar-type stars''.Clearly, we need to identify parameters that can be observed on the Sunas well as on other stars which can be interpreted unambiguously. Themost widely accepted dynamo signature is the presence of an activitycycle, well documented for the Sun and for main-sequence stars due tothe Mount Wilson Ca II H&K project. Only recently have we detectedspatial information, differential rotation and possibly meridional flowson other stars and thereby adding another constraint for itsinterpretation within a dynamo theory. Again, the picture is notcomplete yet, despite that there is just a single main ingredient thatacts as the driving mechanism for activity in all atmospheric layers andthe convective envelope of a solar-type star: the dynamo-relatedmagnetic field. I stress the importance of mapping stellar surfaces asfingerprints of the underlying dynamo action over long periods of time.

Chromospheric models of solar analogues with different activity levels
We computed chromospheric models of the Sun as a star and of nine solaranalogues. The atmospheric models were constructed to obtain the bestpossible match with the Ca II K and Hβ lines, including theasymmetry of the lines due to macroscopic velocity fields. The starswere chosen with 0.62 < B-V< 0.68 (the solar B-V=0.65) and have awide variety of magnetic activity levels, which allows us to study thedifferences in atmospheric structures induced by activity. For the lessactive stars we found that the changes with activity are in the regionof the temperature minimum, while the most active stars show changes allalong their atmospheric structures, mainly in the upper chromosphere.Regarding the macroscopic velocity fields, we can distinguish betweenthe two groups. The most active group has a velocity field in thetemperature-minimum region, and the other group in the chromosphericplateau. We also computed the net radiative losses for each model, andfound that they depend linearly on the usual index of chromosphericactivity, SCa II.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Fine structure of the chromospheric activity in Solar-type stars - The Hα line
A calibration of Hα as both a chromospheric diagnostic and an ageindicator is presented, complementing the works previously done on thissubject (\cite{herbig}; \cite{luca1}). The chromospheric diagnostic wasbuilt with a statistically significant sample, covering nine years ofobservations, and including 175 solar neighborhood stars. Regarding theage indicator, the presence of stars for which very accurate ages aredetermined, such as those belonging to clusters and kinematic groups,lends confidence to our analysis. We also investigate the possibilitythat stars of the same age might have gone through different tracks ofchromospheric decay, identifying - within the same age range - effectsof metallicity and mass. These parameters, however, as well as age, seemto be significant only for dwarf stars, losing their meaning when weanalyze stars in the subgiant branch. This result suggests that, inthese evolved stars, the emission mechanism cannot bemagnetohydrodynamical in nature, in agreement with recent models (Fawzyet al. 2002c, and references therein). The Sun is found to be a typicalstar in its Hα chromospheric flux, for its age, mass andmetallicity. As a byproduct of this work, we developed an automaticmethod to determine temperatures from the wings of Hα, which meansthe suppression of the error inherent to the visual procedure used inthe literature.Based on observations collected at Observatório do Pico dos Dias,operated by the Laboratório Nacional de Astrofísica, CNPq,Brazil.Table 5 is only available in electronic form at thehttp://www.edpsciences.org

Mg II chromospheric radiative loss rates in cool active and quiet stars
The Mg II k emission line is a good indicator of the level ofchromospheric activity in late-type stars. We investigate the dependenceof this activity indicator on fundamental stellar parameters. To thispurpose we use IUE observations of the Mg II k line in 225 late-typestars of luminosity classes I-V, with different levels of chromosphericactivity. We first re-analyse the relation between Mg II k lineluminosity and stellar absolute magnitude, performing linear fits to thepoints. The ratio of Mg II surface flux to total surface flux is foundto be independent of stellar luminosity for evolved stars and toincrease with decreasing luminosity for dwarfs. We also analyse the MgII k line surface flux-metallicity connection. The Mg II k emissionlevel turns out to be not dependent on metallicity. Finally, the Mg II kline surface flux-temperature relation is investigated by treatingseparately, for the first time, a large sample of very active and normalstars. The stellar surface fluxes in the k line of normal stars arefound to be strongly dependent on the temperature and slightly dependenton the gravity, thus confirming the validity of recently proposedmodels. In contrast, data relative to RS CVn binaries and BY Dra stars,which show very strong chromospheric activity, are not justified in theframework of a description based only on acoustic waves and uniformlydistributed magnetic flux tubes so that they require more detailedmodels.

CHORIZOS: A χ2 Code for Parameterized Modeling and Characterization of Photometry and Spectrophotometry
We have developed CHi-square cOde for parameterRized modeling andcharacterIZation of phOtometry and Spectrophotmetry (CHORIZOS). CHORIZOScan use up to two intrinsic free parameters (e.g., temperature andgravity for stars, type and redshift for galaxies, or age andmetallicity for stellar clusters) and two extrinsic parameters (amountand type of extinction). The code uses χ2 minimization tofind all models compatible with the observed data in the modelN-dimensional (N=1, 2, 3, 4) parameter space. CHORIZOS can use eithercorrelated or uncorrelated colors as input and is specially designed toidentify possible parameter degeneracies and multiple solutions. Thecode is written in IDL and is available to the astronomical community.Here we present the techniques used, test the code, apply it to a fewwell-known astronomical problems, and suggest possible applications. Asa first scientific result from CHORIZOS, we confirm from photometry theneed for a revised temperature-spectral type scale for OB starspreviously derived from spectroscopy.

A search for debris discs around stars with giant planets
Eight nearby stars with known giant planets have been searched forthermal emission in the submillimetre arising from dust debris. The nullresults imply quantities of dust typically less than 0.02 Earth massesper star. Conversely, literature data for 20 Sun-like stars with debrisdiscs show that <= 5 per cent have gas giants inside a fewastronomical units - but the dust distribution suggests that nearly allhave more distant planets. The lack of overlap in these systems - i.e.few stars possess both inner planets and a disc - indicates that thesephenomena either are not connected or are mutually exclusive. Comparisonwith an evolutionary model shows that debris masses are predicted to below by the stellar ages of 2-8 Gyr (unless the colliding parent bodiesare quite distant, located beyond 100-200 au), but it remains to beexplained why stars that do have debris should preferentially only havedistant planets. A simple idea is proposed that could produce theselargely different systems, invoking a difference in the primordial discmass. Large masses promote fast gas giant growth and inwards migration,whereas small masses imply slow evolution, low-mass gas giants andoutwards migration that increases the collision rate of Kuiper Belt-likeobjects. This explanation neglects other sources of diversity betweendiscs (such as density and planetesimal composition and orbits), but itdoes have the merit of matching the observational results.

Spectroscopic observations of Jupiter Trojans
We present the results of a campaign of spectroscopic observations ofJupiter Trojan asteroids. Thirty-four objects were observed during threeruns in July and November 1998, and March 2002 using the Danish 1.54-mtelescope at ESO. The covered spectral range was between 5000 and 9000Å. Our observations include objects belonging both L4to L5 clouds. According to analyses of previousinvestigations of Trojans, the spectra of different taxonomic classescan be separated on the basis of the slope of the reflectance spectrum.The large majority of the objects of our sample have been found tobelong to the D taxonomic class, but we found also objects of P- andC-type. In two cases, we found also evidence of blueish spectral trends.Our data are important, since they allow us to substantially enlarge thewhole data set of available Trojan spectra.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Erratum: Magnetic activity of six young solar analogues II. Surface Differential Rotation from long-term photometry
Not Available

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Top Ten solar analogs in the ELODIE library
Several solar analogs have been identified in the library of highresolution stellar spectra taken with the echelle spectrograph ELODIE. Apurely differential method has been used, based on the χ2comparison of a large number of G dwarf spectra to 8 spectra of the Sun,taken on the Moon and Ceres. HD 146233 keeps its status of closest eversolar twin (Porto de Mello & da Silva \cite{PMDS97}). Some otherspectroscopic analogs have never been studied before, while the twoplanet-host stars HD 095128 and HD 186427 are also part of theselection. The fundamental parameters found in the literature for thesestars show a surprising dispersion, partly due to the uncertaintieswhich affect them. We discuss the advantages and drawbacks ofphotometric and spectroscopic methods to search for solar analogs andconclude that they have to be used jointly to find real solar twins.Based on observations made at the Observatoire de Haute-Provence(France).

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Library of flux-calibrated echelle spectra of southern late-type dwarfs with different activity levels
We present Echelle spectra of 91 late-type dwarfs, of spectral typesfrom F to M and of different levels of chromospheric activity, obtainedwith the 2.15 m telescope of the CASLEO Observatory located in theArgentinean Andes. Our observations range from 3890 to 6690 Å, ata spectral resolution from 0.141 to 0.249 Å per pixel(R=λ/δ λ ≈ 26 400). The observations were fluxcalibrated with the aid of long slit spectra. A version of thecalibrated spectra is available via the World Wide Web.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699The spectra are available as FITS and ascii-files at the URL:http://www.iafe.uba.ar/cincunegui/spectra/Table2.html. They are alsoavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699. When convertingthe fits to ascii, the spectra were oversampled to a constant δλ ≈ 0.15 Å.Table 2 is also available in electronic form at the CDS via anonymous

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

Astrophysics of Young Star Binaries
This paper describes our study of the astrophysics of individualcomponents in close pre-main-sequence binaries. We observed both starsin 17 systems, located in four nearby star-forming regions, usinglow-resolution (R=760) infrared spectroscopy and photometry. For 29components we detected photospheric absorption lines and were able todetermine spectral type, extinction, K-band excess, and luminosity. Theother five objects displayed featureless or pure emission line spectra.In ~50% of the systems, the extinction and K-band excess of the primarystars dominate those of the secondaries. Masses and ages were determinedfor these 29 objects by placing them on the H-R diagram, overlaid withtheoretical pre-main-sequence tracks. Most of the binaries appear to becoeval. The ages span 5×105 to 1×107yr. The derived masses range from the substellar, 0.06Msolar, to 2.5 Msolar, and the mass ratios fromM2/M1=0.04 to 1.0. Fourteen stars show evidence ofcircumstellar disks. The K-band excess is well correlated with the K-Lcolor for stars with circumstellar material.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Cet
Rektaszcenzió:00h22m51.80s
Deklináció:-12°12'34.0"
Vizuális fényesség:6.39
Távolság:20.387 parszek
RA sajátmozgás:393.9
Dec sajátmozgás:61
B-T magnitude:7.186
V-T magnitude:6.455

Katalógusok és elnevezések:
Megfelelő nevek
Flamsteed9 Cet
HD 1989HD 1835
TYCHO-2 2000TYC 5265-757-1
USNO-A2.0USNO-A2 0750-00088315
BSC 1991HR 88
HIPHIP 1803

→ További katalógusok és elnevezések lekérése VizieR-ből