Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 158633


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Spectrometric composition of nearby K dwarfs
We have obtained relatively high resolution spectra of Northernhemisphere K dwarfs. This is the first spectrometric project dedicatedonly to K dwarfs. Earlier studies have concentrated on more massive Fand G dwarfs. However, these stars have already undergone evolutionaryeffects, unlike K dwarfs, which offer more accurate information aboutthe evolution of the Solar neighbourhood. We have determined the LTEabundances of 14 elements for 42 stars with initial metallicity rangecovered by -1.52 < [Fe/H] < 0.48. We confirm the discrepancy inthe abundances derived from neutral and ionized lines. The solution tothis problem cannot just be the modification of initial physicalparameters, but requires fundamental changes in the modeling of Kdwarfs.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses
In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.

Stars within 15 Parsecs: Abundances for a Northern Sample
We present an abundance analysis for stars within 15 pc of the Sunlocated north of -30° declination. We have limited our abundancesample to absolute magnitudes brighter than +7.5 and have eliminatedseveral A stars in the local vicinity. Our final analysis list numbers114 stars. Unlike Allende Prieto et al. in their consideration of a verysimilar sample, we have enforced strict spectroscopic criteria in thedetermination of atmospheric parameters. Nevertheless, our results arevery similar to theirs. We determine the mean metallicity of the localregion to be <[Fe/H]>=-0.07 using all stars and -0.04 when interlopersfrom the thick disk are eliminated.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

S4N: A spectroscopic survey of stars in the solar neighborhood. The Nearest 15 pc
We report the results of a high-resolution spectroscopic survey of allthe stars more luminous than M_V = 6.5 mag within 14.5 pc from the Sun.The Hipparcos catalog's completeness limits guarantee that our survey iscomprehensive and free from some of the selection effects in othersamples of nearby stars. The resulting spectroscopic database, which wehave made publicly available, includes spectra for 118 stars obtainedwith a resolving power of R ≃ 50 000, continuous spectral coveragebetween ˜ 362-921 nm, and typical signal-to-noise ratios in therange 150-600. We derive stellar parameters and perform a preliminaryabundance and kinematic analysis of the F-G-K stars in the sample. Theinferred metallicity ([Fe/H]) distribution is centered at about -0.1dex, and shows a standard deviation of 0.2 dex. A comparison with largersamples of Hipparcos stars, some of which have been part of previousabundance studies, suggests that our limited sample is representative ofa larger volume of the local thin disk. We identify a number ofmetal-rich K-type stars which appear to be very old, confirming theclaims for the existence of such stars in the solar neighborhood. Withatmospheric effective temperatures and gravities derived independentlyof the spectra, we find that our classical LTE model-atmosphere analysisof metal-rich (and mainly K-type) stars provides discrepant abundancesfrom neutral and ionized lines of several metals. This ionizationimbalance could be a sign of departures from LTE or inhomogeneousstructure, which are ignored in the interpretation of the spectra.Alternatively, but seemingly unlikely, the mismatch could be explainedby systematic errors in the scale of effective temperatures. Based ontransitions of majority species, we discuss abundances of 16 chemicalelements. In agreement with earlier studies we find that the abundanceratios to iron of Si, Sc, Ti, Co, and Zn become smaller as the ironabundance increases until approaching the solar values, but the trendsreverse for higher iron abundances. At any given metallicity, stars witha low galactic rotational velocity tend to have high abundances of Mg,Si, Ca, Sc, Ti, Co, Zn, and Eu, but low abundances of Ba, Ce, and Nd.The Sun appears deficient by roughly 0.1 dex in O, Si, Ca, Sc, Ti, Y,Ce, Nd, and Eu, compared to its immediate neighbors with similar ironabundances.Based on observations made with the 2.7 m telescope at the McDonaldObservatory of the University of Texas at Austin (Texas), and the 1.52 mtelescope at the European Southern Observatory (La Silla, Chile) underthe agreement with the CNPq/Observatorio Nacional (Brazil).Tables 3-5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/420/183

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

Resolving the 47 Tucanae Distance Problem
We present new B-, V-, and I-band photometry for a sample of 43 localsubdwarfs with Hipparcos parallax errors less than 13%, in themetallicity range -1.0<[Fe/H]<-0.3, which we use to performmain-sequence (MS) fitting to the Galactic globular cluster 47 Tuc. Thissample is many times larger than those used in previous MS-fittingstudies and also enables us to fit in two color planes, V/(B-V) andV/(V-I). With this enlarged subdwarf sample we investigate whether thecurrent discrepancy in empirical distance estimates for 47 Tuc, arisingfrom recent MS-fitting and white dwarf fitting results, is due toinaccuracies in the MS-fitting method. Comparison of publishedphotometries for 47 Tuc has revealed systematic offsets, which meansthat the (B-V) main line used in previous studies may be too blue by~0.02 mag, which would have the effect of making any derived distancemodulus too large by around 0.1 mag. Preliminary work has alsohighlighted discrepancies between results obtained in the two colorplanes, V/(B-V) and V/(V-I). We have derived main lines in V/(B-V) andV/(V-I) from the data of Kaluzny et al., which we have recalibrated fromthe ``secondary'' standards in 47 Tuc of Stetson (2000). Using anassumed cluster reddening of E(B-V)=0.04, our best-fit apparent distancemodulus is (m-M)V=13.37+0.10-0.11 inboth color planes, which implies a cluster age of 11.0+/-1.4 Gyr andleads to a dereddened distance modulus of(m-M)0=13.25+0.06-0.07. Comparison withprevious work shows that our apparent distance modulus is ~0.2 magsmaller than those derived in previous MS-fitting studies. Thedifference is accounted for by our preferred cluster reddening and therecalibration of the cluster photometry, which has made the main lineredder by an average of 0.02 mag in (B-V). Our derived distance modulusis also now plausibly consistent with the short distance recentlyderived from white dwarf fitting. Independent support for our MS-fittingdistance comes from consideration of the red clump in the cluster, fromwhich we derive a dereddened distance modulus of(m-M)0=13.31+/-0.05, which is in agreement with theMS-fitting result.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Evolutionary Oddities in Old Disk Population Clusters
With a luminosity zero point fixed by the kinematics of old disksuperclusters (HR 1614, t = 6 Gyr, [Fe/H] = +0.1 dex) and groups(Arcturus, t = 14 Gyr, [Fe/H] = -0.65 dex), the luminosities and colorsof evolved old disk stars, especially red horizontal branch (RHB), earlyasymptotic branch [AGB(1)], thermally pulsing asymptotic giant branch[AGB(2)], and sdOB stars in old disk clusters (NGC 6791, 47 Tuc, M71,M67, Mel 66, NGC 2420, NGC 2204, and NGC 2443) are discussed. (1) TheRHB stars in the old disk all have M_V = +0.7 +/- 0.1 (M_K = -1.3 +/-0.1) mag. (2) Large-amplitude red variables (LARVs) with quasi-stableperiods and light curves are old disk stars on AGB(2). (3) AGB(1)objects include CH stars and semiregular (SRa) variables. (4) Thepopulous and overabundant cluster NGC 6791 may be the only disk clusterwith sdOB stars, populating the lower portion of the bifurcated extendedhorizontal branch that is usual in most ``blue tailed'' and high-densityhalo clusters. (5) Post-red giant branch (RGB) stars in old diskclusters show a B - V (b - y) defect when compared with RGB stars,possibly because of a change in the character of the atmospheres. (6) Ifthe bulk of the LARVs are pulsating in the fundamental mode, R Vir (P =145 days) is possibly a first-overtone pulsator. (7) The overabundantold disk clusters are within the solar circle, with Liller 1 being atthe Galactic center. (8) Several probable RHB stars at the southGalactic pole are identified. (9) The period-age relation, combined withthe known spatial distribution of Galactic LARVs, leads to a relationbetween age and scale height of distribution that monotonicallyincreases with age, leaving no obvious reason for a bifurcation of thepopulation.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Classification of Population II Stars in the Vilnius Photometric System. I. Methods
The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.

Star Streams and Galactic Structure
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.1595E&db_key=AST

Empirical Calibration of Absolute Magnitudes for G-K Dwarfs and Subdwarfs in the Vilnius Photometric System
Calibrations giving l M_V as functions of [Fe/H] and various intrinsiccolor indices of the Vilnius photometric system are derived for G--Kdwarfs and subdwarfs. The calibrations are based only on the stars withknown trigonometric parallaxes and allow one to estimate the absolutemagnitudes with a standard deviation of +/- 0.6 mag. Comparisons of ourcalibrations with the absolute magnitude estimates in the literatureshow a satisfactory agreement.

Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2771W&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

MG II chromospheric-emission dating of HR 1614 moving-group stars
A 2800 A Mg II line index I(Mg II) that is sensitive to chromosphericactivity has been measured from International Ultraviolet Explorerspectra of a sample of eight HR 1614 moving-group dwarfs. All of thesedwarfs have values of I(Mg II) indicative of ages greater than or equalto 3 Gyr. The relatively old ages of these dwarfs, together with theirsimilar and peculiar kinematics and high metal abundance, is consistentwith, although not conclusive proof of, coeval formation in closephysical proximity to each other. The age, chemical abundance, andkinematics of the HR 1614 moving group -- with the notable exception ofheight above the Galactic plane -- are similar to the properties of theold open cluster NGC 6791.

Optical Polarization of 1000 Stars Within 50-PARSECS from the Sun
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&AS..101..551L&db_key=AST

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Dragone
Ascensione retta:17h25m00.20s
Declinazione:+67°18'23.0"
Magnitudine apparente:6.43
Distanza:12.798 parsec
Moto proprio RA:-529.4
Moto proprio Dec:2.1
B-T magnitude:7.377
V-T magnitude:6.51

Cataloghi e designazioni:
Nomi esatti
HD 1989HD 158633
TYCHO-2 2000TYC 4210-849-1
BSC 1991HR 6518
HIPHIP 85235

→ Richiesta di ulteriori cataloghi da VizieR