Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 190172


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Lithium abundances for early F stars: new observational constraints for the Li dilution
Aims.To investigate any correlation between Li abundances and rotationalvelocities among F-G evolved stars, we study a large sample of early Fstars from the Bright Star Catalogue (BSC), most of them classified inthe literature as giant stars.Methods.Physical parameters and Liabundances are estimated for each star, often for the first time, bycomparing observed and synthetic spectra. We analyse the position of thestars in the H-R Diagram based on Hipparcos data using stellarevolutionary tracks and we discuss their Li abundances and projectedrotational velocities.Results.Observed stars are mostly on theturnoff, with masses between 1.5 and 2.0 Mȯ. The starswith measured A(Li) abundance show high Li content, most of them withabundance near the cosmic value. The A(Li) versus V sin i diagram showsthe same trend as reported in previous studies: fast rotators (V sinigse 30 km s-1) are also stars with high Li content, whereasslow rotators present a wide range of values of A(Li), ranging from nodetected Li to the cosmic value.

The evolutionary status of the bright high-latitude supergiant HD 190390
Despite its mean apparent magnitude of mV = 6.39, theevolutionary status of HD 190390 (HR7671), a luminous F-type supergiant at high galactic latitude,is still not very clear, but in most papers a post-AGB classification isassumed. New observational material has been obtained with fourdifferent instruments and is presented here. An extensive abundanceanalysis based on high resolution, high signal-to-noise NTT+EMMI spectraconfirms the metal deficiency of this object ([Fe/H] = -1.6), togetherwith a high lithium content (log ɛ(Li) = 1.9). A variabilityanalysis based on Geneva photometry over seven years reveals beatingwith a period of ~3000 days. It is, however, not clear whether thisbeating is caused by a stable triplet, or it is the consequence of smallchanges in the main frequency. More recent data obtained with theHIPPARCOS satellite and the Mercator telescope not only confirm the mainperiod, but also support the presence of a second periodicity of 11days, which was also found in the Geneva photometry. A conclusiveevolutionary status of this object is not given, but alternative to theUU Her (i.e. post-AGB) status, a W Vir classification is discussed.Based on observations collected at the European Southern Observatory, LaSilla, Chile (programme 61.E-0426), and at the Observatorio del Roque delos Muchachos, La Palma, Spain.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Stellar populations in Seyfert 2 galaxies. I. Atlas of near-UV spectra
We have carried out a uniform spectroscopic survey of Seyfert 2 galaxiesto study the stellar populations of the host galaxies. New spectra havebeen obtained for 79 Southern galaxies classified as Seyfert 2 galaxies,7 normal galaxies, and 73 stars at a resolution of 2.2 Å over thewavelength region 3500-5300 Å. Cross-correlation between thestellar spectra is performed to group the individual observations into44 synthesis standard spectra. The standard groups include a solarabundance sequence of spectral types from O5 to M3 for dwarfs, giants,and supergiants. Metal-rich and metal-weak F-K giants and dwarfs arealso included. A comparison of the stellar data with previouslypublished spectra is performed both with the individual spectra and thestandard groups. For each galaxy, two distinct spatial regions areconsidered: the nucleus and the external bulge. Spectroscopic variationsfrom one galaxy to another and from the central to the external regionare briefly discussed. It is found that the central region of a Seyfert2 galaxy, after subtracting the bulge stellar population, always shows anear-UV spectrum similar to one of three representative categories: a)many strong emission lines and only two visible absorption lines (Ca IiK and G band) (Sey2e); b) few emission lines, many absorption lines, anda redder continuum than the previous category (Sey2a); c) an almost flatcontinuum and high-order Balmer lines seen in absorption (Sey2b). Theproportion of Seyfert 2 galaxies belonging to each class is found to be22%, 28%, and 50% respectively. We find no significative differencesbetween morphology distributions of Seyfert 2 galaxies with Balmer linesdetected in absorption and the rest of the sample. This quick lookthrough the atlas indicates that half of Seyfert 2 galaxies harbour ayoung stellar population (about or less than 100 Myr) in their centralregion, clearly unveiled by the high order Balmer series seen inabsorption. Based on observations collected at the European SouthernObservatory, Chile (ESO 65.P-0014(A)). Tables 1-3 and 8 and Fig. A.1(Appendix A) are only available in electronic form athttp://www.edpsciences.org

Are metallic A-F giants evolved AM stars? Rotation and rate of binaries among giant F stars
We test the hypothesis of Berthet (1992) {be91} which foresees that Amstars become giant metallic A and F stars (defined by an enhanced valueof the blanketing parameter Delta m_2 of the Geneva photometry) whenthey evolve. If this hypothesis is right, Am and metallic A-FIII starsneed to have the same rate of binaries and a similar distribution ofvsin i. From our new spectroscopic data and from vsin i and radialvelocities in the literature, we show that it is not the case. Themetallic giant stars are often fast rotators with vsin i larger than 100kms(-1) , while the maximum rotational velocity for Am stars is about100 kms(-1) . The rate of tight binaries with periods less than 1000days is less than 30% among metallic giants, which is incompatible withthe value of 75% for Am stars - [Abt & Levy 1985] {ab85}).Therefore, the simplest way to explain the existence of giant metallic Fstars is to suggest that all normal A and early F stars might go througha short ``metallic" phase when they are finishing their life on the mainsequence. Besides, it is shown that only giant stars with spectral typecomprised between F0 and F6 may have a really enhanced Delta m_2 value,while all A-type giants seem to be normal. Based on observationscollected at Observatoire de Haute Provence (OHP), France.

Photospheric and chromospheric activity in the late-type giant component of the evolved binary system HD 185510
UBV photometry and moderate resolution Hα spectrophotometry of theevolved binary system HD 185510 (sdB + K0 III), performed at CataniaAstrophysical Observatory, is presented and discussed. Thespectrophotometric data were collected in 1991, 1993, and 1994, whilethe photometric light curves were obtained in 1993, 1994 and 1995.>From the B and V photometry we determine a new photometricrotational period of 26(d) .23, confirming the asynchronous rotation ofthe cool giant component. The spectroscopic data confirm the vsin ivalue of 15 Km s(-1) measured by Fekel et al. (1993) and clearly reveala filled-in Hα line with appreciable variations. The excessemission of the line, observed at any orbital phase, is found to beanticorrelated with the V light curve and is primarily ascribed to thechromospheric activity on the cool star. The primary total eclipse isclearly visible in the U band, but undetectable in the V band. >Fromthe U observations we determined a total duration of the primary eclipse(from 1(st) to 4(rd) contact) of 1(d) .3883, with the ingress lastingonly 27 minutes. This new accurate monitoring and timing of the eclipseallowed us to improve the system solution which leads to R_C=8.8Rsun, T_C=4800K, R_H=0.11 Rsun, T_H=30000K for thecool and hot star respectively. The evolution of HD185510B is discussedalso in relation to the evolutionary status of HD 185510A and thesynchronization time scale. HD 185510B is probably a sdB near the zeroage extended horizontal branch, resulting from an enhanced mass loss inlate case B or case A mass exchange with a possible common envelopephase. A small amount (15-20%) of mass loss from the system which canaccount for the strong IR excess is suggested. The complete U B Vphotometric data set is available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity
Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)

Metallicism among A and F giant stars
132 stars considered as A and F giants have been studied for theirproperties in the Geneva photometric system. It is shown that thissystem to derive the temperature, absolute magnitude and Fe/H value forstars in this part of the HR diagram. 36 percent of the stars of oursample exhibit an enhanced value Delta m2 that can be interpreted interms of Fe/H. The red limit of stars having an enhanced Fe/H value is0.225 in B2-V1 or 6500 K in Teff. This corresponds to the limit definedby Vauclair and Vauclair (1982) where the diffusion timescale is equalto the stellar lifetime and permits the assumption that the diffusion isthe process responsible for the metallicism observed in the A and Fgiants.

Photoelectric H-beta photometry for A and F stars brighter than V = 14 M in four areas in directions towards the South Galactic Pole
Data from photoelectric H-beta observations of 145 mainly A and F starswith V = 14 mag or brighter in four regions totalling 60 sq deg andlocated near galactic latitude b(II) = -60 deg, obtained using atwo-channel H-beta photometer on the 1.5-m Danish reflecting telescopeat ESO on two nights in 1981 and four nights in 1982, are presented intables along with the Stromgren b magnitudes calculated from thewide-channel H-beta counts. These observations are undertaken in theframework of a uvby photometric search for A-F stars of Population IIbrighter than V = 15.5 mag. The mean error per observation is given as +or - 0.020 mag in b and + or - 0.009 mag in H-beta.

Principal components analysis of spectral data. I - Methodology for spectral classification
Principal components analysis is applied to published narrow-bandphotometric data on 53 standard stars of spectral types A and F.Correlations within the data are displayed and the propagation of errorsis discussed. Techniques for improving the precision and the efficiencyof the classification are explored, including non-linear regression andtrimming and grouping of the original data. As an example, a set of 47observed variables is reduced to 3, with no loss of precision.

Scanner studies of composite spectra. II - Giants and dwarfs
A set of line and continuum indices is calibrated as a function ofspectral type, over the range late O-early G for giants, using lowresolution scanner observations in the 3500-4400 A region. Line orfeature indices are defined for H-gamma, G band, Ca I (4227 A), Ca II(K), H 3889, and the Balmer jump. The combination of the results withthose for standard-luminosity class IV-V stars allows the analysis ofcomposite-spectrum objects. The spectrum scans of 58 visual,spectroscopic and eclipsing pairs are compared with a grid of calculatedcomposites, and a computer program is used to generate giant-giant,giant-dwarf and dwarf-dwarf pairs of composites for comparison withobservations. A set of 11 dwarf stars treated in Beavers and Cook (1980)is reexamined using a version of the computer program which fixesDelta(m) for the synthesis procedure to agree with values found in theliterature.

Prediction of spectral classification from photometric observations - Application of the UVBY beta photometry and the MK spectra classification. II - General case
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1980A&A....85...93M&db_key=AST

Prediction of spectral classification from photometric observations-application to the UVBY beta photometry and the MK spectral classification. I - Prediction assuming a luminosity class
An algorithm based on multiple stepwise and isotonic regressions isdeveloped for the prediction of spectral classification from photometricdata. The prediction assumes a luminosity class with reference touvbybeta photometry and the MK spectral classification. The precisionattained is about 90 percent and 80 percent probability of being withinone spectral subtype respectively for luminosity groups I and V and forluminosity groups III and IV. A list of stars for which discrepanciesappear between photometry and spectral classification is given.

Four-colour and H BET photometry of some bright southern stars- II.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972MNRAS.160..155S&db_key=AST

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Aquila
Ascensione retta:20h04m01.20s
Declinazione:-07°28'11.0"
Magnitudine apparente:6.72
Distanza:64.977 parsec
Moto proprio RA:12.3
Moto proprio Dec:-38.3
B-T magnitude:7.103
V-T magnitude:6.728

Cataloghi e designazioni:
Nomi esatti
HD 1989HD 190172
TYCHO-2 2000TYC 5172-2615-1
USNO-A2.0USNO-A2 0825-17610080
BSC 1991HR 7661
HIPHIP 98809

→ Richiesta di ulteriori cataloghi da VizieR