Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 84182


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A Cold Nearby Cloud inside the Local Bubble
The high-latitude Galactic H I cloud toward the extragalactic radiosource 3C 225 is characterized by very narrow 21 cm emission andabsorption indicative of a very low H I spin temperature of about 20 K.Through high-resolution optical spectroscopy, we report the detection ofstrong, very narrow Na I absorption corresponding to this cloud toward anumber of nearby stars. Assuming that the turbulent H I and Na I motionsare similar, we derive a cloud temperature of20+6-8 K (in complete agreement with the 21 cmresults) and a line-of-sight turbulent velocity of 0.37+/-0.08 kms-1 from a comparison of the H I and Na I absorption linewidths. We also place a firm upper limit of 45 pc on the distance of thecloud, which situates it well inside the Local Bubble in this directionand makes it the nearest known cold diffuse cloud discovered to date.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Near-infrared photometry of stars
Results are presented of infrared photometric observations performed oncomparison stars during a monitoring of long-period variables. Theseobservations, spread over a lapse of about 5 years, are used to derivethe J, H, and K magnitudes of 54 stars in the photometric systemdescribed by Koornneef (1983). The 1950.0 coordinates, spectral types,visual magnitudes, average magnitudes, and the number of observationsare given for each object.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Leo
Right ascension:09h43m36.42s
Declination:+13°26'31.3"
Apparent magnitude:7.084
Distance:158.228 parsecs
Proper motion RA:65.5
Proper motion Dec:-57.5
B-T magnitude:8.615
V-T magnitude:7.211

Catalogs and designations:
Proper Names
HD 1989HD 84182
TYCHO-2 2000TYC 834-122-1
USNO-A2.0USNO-A2 0975-06318708
HIPHIP 47706

→ Request more catalogs and designations from VizieR