Главная     Выжить во Вселенной    
Services
    Why to Inhabit     Top Contributors     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Войти  
→ Adopt this star  

HD 191226


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Two Micron All Sky Survey, Infrared Astronomical Satellite, and Midcourse Space Experiment Color Properties of Intrinsic and Extrinsic S Stars
We attempt to select new candidate intrinsic and extrinsic S stars inthe General Catalogue of Galactic S Stars (GCGSS) by combining data fromthe Two Micron All Sky Survey, the Infrared Astronomical Satellite, andthe Midcourse Space Experiment. Catalog entries are cross-identified,yielding 528 objects, out of which 29 are known extrinsic S stars and 31are known intrinsic S stars. Their color-color diagrams,(H-[12])-(K-[12]) and (K-[12])-(J-[25]), are drawn and used to identifya new sample of 147 extrinsic and 256 intrinsic S star candidates, whilethe nature of 65 stars remains identified. We infer that about 38%+/-10%of the GCGSS objects are of extrinsic type. Moreover, we think thatcolors such as J-[25] can be used to split off the two categories of Sstars, while single colors are not appropriate. The color-colordiagrams, such as (H-[12])-(K-[12]) and (K-[12])-(J-[25]), are proven tobe powerful tools for distinguishing the two kinds of S stars.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

The Henize sample of S stars. IV. New symbiotic stars
The properties of the few symbiotic stars detected among the 66 binary Sstars from the Henize sample are discussed. Two stars (Hen 18 and Hen121) exhibit both a strong blue-violet continuum and strongHalpha emission (FWHM of 70 km s-1), whereas Hen134 and 137 exhibit weak Halpha emission. TheHalpha profiles are typical of non-dusty symbiotic starsbelonging to class S-3 as defined by Van Winckel et al. (1993, A&AS102, 401). In that class as in the Henize symbiotic S stars, He I, [NII] or [S II] emission lines are absent, suggesting that the nebulardensity is high but the excitation rather low. The radial velocity ofthe centre of the Halpha emission is identical to that of thecompanion star (at least for Hen 121 where this can be checked from theavailable orbital elements), thus suggesting that the Halphaemission originates in gas moving with the companion star. For Hen 121,this is further confirmed by the disappearance of the ultraviolet Balmercontinuum when the companion is eclipsed by the S star. Hen 121 is thusthe second eclipsing binary star discovered among extrinsic S stars (thefirst one is HD 35155). A comparison of the available data on orbitalperiods and Halpha emission leads to the conclusion thatHalpha emission in s stars seems to be restricted to binarysystems with periods in the range 600-1000 d, in agreement with thesituation prevailing for red symbiotic stars (excluding symbioticnovae). Symbiotic S stars are found among the most evolved extrinsic Sstars. Based on observations carried out at the European SouthernObservatory (ESO, La Silla, Chile; program 60.E-0805) and at the Swiss70 cm telescope (La Silla, Chile).

Near-infrared observations of candidate extrinsic S stars
Photometric observations in the near infrared for 161 S stars, including18 Tc-rich (intrinsic) stars, 19 Tc-deficient (extrinsic) ones and 124candidates for Tc-deficient S stars, are presented in this paper. Basedon some further investigations into the infrared properties of bothTc-rich and Tc-deficient S stars, 104 candidates are identified as verylikely Tc-deficient S stars. The large number of infrared-selectedTc-deficient S stars provides a convenient way to study the physicalproperties and the evolutionary status of this species of S stars.

Zirconium to Titanium Ratios in a Large Sample of Galactic S Stars
The [Zr/Ti] ratio for a large sample of Galactic S stars has beendetermined using high-quality, high-resolution spectra. The pattern ofZr enhancements in intrinsic and extrinsic S stars is found to differ,and the [Zr/Ti] ratio in the extrinsic S stars clearly links them to thestrong barium stars. In addition, the pattern of [Zr/Ti] ratios seems toindicate that the progression of spectral type M to MS to S to SC is duelargely to an increase in the abundance of s-process elements and notsolely to a changing C/O ratio as claimed by some investigators (such asScalo and Ross).

Re-processing the Hipparcos Transit Data and Intermediate Astrometric Data of spectroscopic binaries. I. Ba, CH and Tc-poor S stars
Only 235 entries were processed as astrometric binaries with orbits inthe Hipparcos and Tycho Catalogue (\cite{Hipparcos}). However, theIntermediate Astrometric Data (IAD) and Transit Data (TD) made availableby ESA make it possible to re-process the stars that turned out to bespectroscopic binaries after the completion of the Catalogue. This paperillustrates how TD and IAD may be used in conjunction with the orbitalparameters of spectroscopic binaries to derive astrometric parameters.The five astrometric and four orbital parameters (not already known fromthe spectroscopic orbit) are derived by minimizing an objective function(chi 2) with an algorithm of global optimization. This codehas been applied to 81 systems for which spectroscopic orbits becameavailable recently and that belong to various families ofchemically-peculiar red giants (namely, dwarf barium stars, strong andmild barium stars, CH stars, and Tc-poor S stars). Among these 81systems, 23 yield reliable astrometric orbits. These 23 systems make itpossible to evaluate on real data the so-called ``cosmic error''described by Wielen et al. (1997), namely the fact that an unrecognizedorbital motion introduces a systematic error on the proper motion.Comparison of the proper motion from the Hipparcos catalogue with thatre-derived in the present work indicates that the former are indeed faroff the present value for binaries with periods in the range 3 to ~ 8years. Hipparcos parallaxes of unrecognized spectroscopic binaries turnout to be reliable, except for systems with periods close to 1 year, asexpected. Finally, we show that, even when a complete orbital revolutionwas observed by Hipparcos, the inclination is unfortunately seldomprecise. Based on observations from the Hipparcos astrometric satelliteoperated by the European Space Agency (ESA 1997).

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

A CORAVEL radial-velocity monitoring of S stars: Symbiotic activity vs. orbital separation. III.
Orbital elements are presented for the Tc-poor S stars HR 363 (= HD7351) and HD 191226. With an orbital period of 4592 d (=12.6 y), HR 363has the longest period known among S stars, and yet it is a strong X-raysource. Its X-ray flux is similar to that of HD 35155, an S star withone of the shortest orbital periods (640 d). This surprising result isput in perspective with other diagnostics of binary interaction observedin binary S stars. They reveal that there is no correlation between thelevel of binary interaction and the orbital period. All these activitydiagnostics moreover exhibit a strong time-variability. In thewell-documented case of HR 1105, this time-variability appears to be acombination of orbital modulation and secular variation. A stream of gasfrom the red-giant wind, which is heated when funneled through the innerLagrangian point, has been proposed as the source of the hard photons\cite[(Shcherbakov & Tuominen 1992).]{S} Different viewing angles ofthe stream during the orbital cycle account for the orbital modulation,whereas long-term fluctuations of the mass-loss rate account for thesecular variations. Little dependence to the orbital separation isexpected for this kind of activity. If such streams are causing theactivity observed in the other binary S stars as well, it would providea natural explanation for the absence of correlation between orbitalperiods and activity levels, since the red-giant mass loss rate would bethe dominant factor. The existence of such funneled streams is moreoverpredicted by smooth particle hydrodynamics simulations of mass transferin detached binary systems. Based on observations performed with theSwiss telescope at the Haute-Provence Observatory, France.

A CORAVEL radial-velocity monitoring of giant BA and S stars: Spectroscopic orbits and intrinsic variations. I.
With the aim of deriving the binary frequency among Ba and S stars, 56new spectroscopic orbits (46 and 10, respectively) have been derived forthese chemically-peculiar red giants monitored with the \coravel\spectrometers. These orbits are presented in this paper (38 orbits) andin a companion paper \cite[(Udry et al. 1998,]{Udry} Paper II; 18orbits). The results for 12 additional long-period binary stars (6 and6, respectively), for which only minimum periods (generally exceeding 10y) can be derived, are also presented here (10) and in Paper II (2). Theglobal analysis of this material, with a few supplementary orbits fromthe literature, is presented in \cite[Jorissen et al.(1998).]{Jorissen98} For the subsample of Mira S, SC and (Tc-poor) Cstars showing intrinsic radial-velocity variations due to atmosphericphenomena, orbital solutions (when available) have been retained if thevelocity and photometric periods are different (3 stars). However, it isemphasized that these orbit determinations are still tentative. Threestars have been found with radial-velocity variations synchronous withthe light variations. Pseudo-orbital solutions have been derived forthose stars. In the case of RZ Peg, a line-doubling phenomenon isobserved near maximum light, and probably reflects the shock wavepropagating through the photosphere. Based on observations obtained atthe Haute-Provence Observatory (France) and at the European SouthernObservatory (ESO, La Silla, Chile).

Infrared study of the two categories of S stars
Photometric observations of 20 Tc-deficient and 24 Tc-rich S stars inthe near infrared are presented in this paper. With the IRAS data,infrared two color diagrams, IRAS low-resolution spectra and energydistributions are discussed to summarize the way to segregate Tc-richstars from Tc-deficient ones.

On the Variability of S Stars as Observed by the Hipparcos
The Hipparcos photometry of S type stars shows that they are allvariable. The intrinsic S stars show a larger range of amplitudes thando the extrinsic S stars.

Insights into the formation of barium and Tc-poor S stars from an extended sample of orbital elements
The set of orbital elements available for chemically-peculiar red giant(PRG) stars has been considerably enlarged thanks to a decade-longCORAVEL radial-velocity monitoring of about 70 barium stars and 50 Sstars. When account is made for the detection biases, the observedbinary frequency among strong barium stars, mild barium stars andTc-poor S stars (respectively 35/37, 34/40 and 24/28) is compatible withthe hypothesis that they are all members of binary systems. Thesimilarity between the orbital-period, eccentricity and mass-functiondistributions of Tc-poor S stars and barium stars confirms that Tc-poorS stars are the cooler analogs of barium stars. A comparative analysisof the orbital elements of the various families of PRG stars, and of asample of chemically-normal, binary giants in open clusters, revealsseveral interesting features. The eccentricity - period diagram of PRGstars clearly bears the signature of dissipative processes associatedwith mass transfer, since the maximum eccentricity observed at a givenorbital period is much smaller than in the comparison sample of normalgiants. be held The mass function distribution is compatible with theunseen companion being a white dwarf (WD). This lends support to thescenario of formation of the PRG star by accretion of heavy-element-richmatter transferred from the former asymptotic giant branch progenitor ofthe current WD. Assuming that the WD companion has a mass in the range0.60+/-0.04 Msb ȯ, the masses of mild and strong barium starsamount to 1.9+/-0.2 and 1.5+/-0.2 Msb ȯ, respectively. Mild bariumstars are not restricted to long-period systems, contrarily to what isexpected if the smaller accretion efficiency in wider systems were thedominant factor controlling the pollution level of the PRG star. Theseresults suggest that the difference between mild and strong barium starsis mainly one of galactic population rather than of orbital separation,in agreement with their respective kinematical properties. There areindications that metallicity may be the parameter blurring the period -Ba-anomaly correlation: at a given orbital period, increasing levels ofheavy-element overabundances are found in mild barium stars, strongbarium stars, and Pop.II CH stars, corresponding to a sequence ofincreasingly older, i.e., more metal-deficient, populations. PRG starsthus seem to be produced more efficiently in low-metallicitypopulations. Conversely, normal giants in barium-like binary systems mayexist in more metal-rich populations. HD 160538 (DR Dra) may be such anexample, and its very existence indicates at least that binarity is nota sufficient condition to produce a PRG star. This paper is dedicated tothe memory of Antoine Duquennoy, who contributed many among theobservations used in this study

The HIPPARCOS Hertzsprung-Russell diagram of S stars: probing nucleosynthesis and dredge-up
HIPPARCOS trigonometrical parallaxes make it possible to compare thelocation of Tc-rich and Tc-poor S stars in the Hertzsprung-Russell (HR)diagram: Tc-rich S stars are found to be cooler and intrinsicallybrighter than Tc-poor S stars. The comparison with the Genevaevolutionary tracks reveals that the line marking the onset of thermalpulses on the asymptotic giant branch (AGB) matches well the observedlimit between Tc-poor and Tc-rich S stars. Tc-rich S stars are, asexpected, identified with thermally-pulsing AGB stars of low andintermediate masses, whereas Tc-poor S stars comprise mostly low-massstars (with the exception of 57 Peg) located either on the red giantbranch or on the early AGB. Like barium stars, Tc-poor S stars are knownto belong exclusively to binary systems, and their location in the HRdiagram is consistent with the average mass of 1.6+/-0.2 Msb ȯderived from their orbital mass-function distribution (Jorissen et al.1997, A&A, submitted). A comparison with the S stars identified inthe Magellanic Clouds and in the Fornax dwarf elliptical galaxy revealsthat they have luminosities similar to the galactic Tc-rich S stars.However, most of the surveys of S stars in the external systems did notreach the lower luminosities at which galactic Tc-poor S stars arefound. The deep Westerlund survey of carbon stars in the SMC uncovered afamily of faint carbon stars that may be the analogues of thelow-luminosity, galactic Tc-poor S stars. Based on data from theHIPPARCOS astrometry satellite

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A catalogue of associations between IRAS sources and S stars.
Cross identifications between the General Catalogue of Galactic S Stars(GCGSS), the IRAS Point Source Catalogue (PSC), and the Guide StarCatalogue (GSC) are presented. The purpose of the present catalogue isi) to provide a clean sample of S stars with far-IR data, and ii) toprovide accurate GSC positions for S stars, superseding those listed inthe GCGSS. The IRAS colour-colour diagram and the galactic distributionof S stars associated with an IRAS source are presented. Several S starshaving extended images in at least one IRAS band have also beenidentified.

S stars: infrared colors, technetium, and binarity
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&A...271..463J&db_key=AST

On the Infrared Properties of S-Stars with and Without Technetium
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&A...271..180G&db_key=AST

Companions to bright S and MS stars - Technetium deficiency and binarity
To test the popular hypothesis that technetium-deficient stars ofspectral types S and MS are mass-transfer binaries, we have searched forultraviolet light from the putative hot secondaries in spectra takenwith the SWP spectrograph of IUE. Although most S and MS stars areapparently thermally pulsing AGB (asymptotic giant branch) stars whosesurfaces have been enriched with s-process elements and carbon dredgedup from the interior, those stars whose spectra show enhanced s-processelements but no Tc are widely believed to be cooler analogs of the Ba IIstars, which apparently owe their unusual abundances to prior masstransfer, the Tc from which has decayed away. We report IUE observationsof 15 S and MS stars with the SWP, including the identification of sixhot companions. Assembling all the IUE observations made to date, wefind clear support for the mass-transfer hypothesis, confirming evidencefrom other lines of research. We further discuss the ages of thecompanions and the implications of these discoveries for stellarevolution.

Binary S-Stars and Ms-Stars
Not Available

S stars without technetium - The binary star connection
An exploratory survey of non-Mira MS and S star radial velocities andthe He I 10830 A triplet are used to test the assertion that S starswithout Tc are spectroscopic binaries, probably with white-dwarfcompanions. It is found that the He I 10830 A triplet is a prominentfeature of the spectra of S stars without Tc, but the He I line isundetectable in the spectra of most S stars without Tc. Also, whenradial-velocity variations attributable to orbital motion are detectedfor S stars without Tc, the variations have a higher frequency that thatof S stars with Tc. The results suggest that the S stars without Tc arespectroscopic binaries and are probably related to the G and K giantBarium stars.

Additional late-type stars with technetium
The results of a survey of 279 late-type giants and supergiants for thespectral lines of the radioactive element technetium (Tc I) at 4297,4262, and 4238 A are presented. The following conclusions are reached:(1) the presence of Tc correlates very strongly with the existence oflight variability; (2) evolutionary MS stars show Tc and spectroscopicMS stars do not show Tc; (3) single S stars show Tc; (4) SC stars showTc; (5) about 75 percent of the C stars show Tc; and (6) Ba II stars donot show Tc. The findings are compatible with predictions from stellarevolution theory.

A General Catalogue of Galactic S-Stars - ED.2
Not Available

New UBVRI photometry for 900 supergiants
A description is presented of the results obtained in connection with asystematic program of supergiant photometry on the Johnson UBVRI system.During the eight years after the start of the program, almost 1000 starshave been observed, about 400 three or more times each. The originalselection of stars used the spectral type catalog of Jaschek et al.(1964) to choose supergiants. Since observations were possible from bothChile and Canada, no declination limits were imposed, and no particularselection criteria were imposed other than to eliminate carbon stars.These are so red as to require enormous extrapolations of thetransformation equations.

The Abundance of Lithium in Early M-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1967ApJ...147..587M&db_key=AST

A photometric standard region in Cygnus
Not Available

Structure de la galaxie dans la région de P Cygni
Not Available

The Distribution of the BD M-Type Stars Along the Galactic Equator.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1958ApJ...128..510N&db_key=AST

Stellar Spectra and Colors in a Clear Region in Cygnus.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1949ApJ...110..478N&db_key=AST

The absolute magnitudes and parallaxes of 410 stars of type M.
Not Available

The radial velocities of 1013 stars.
Not Available

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Лебедь
Прямое восхождение:20h07m26.53s
Склонение:+36°34'04.0"
Видимая звёздная величина:7.34
Расстояние:2564.103 парсек
Собственное движение RA:-2
Собственное движение Dec:-2.4
B-T magnitude:9.692
V-T magnitude:7.535

Каталоги и обозначения:
Собственные имена
HD 1989HD 191226
TYCHO-2 2000TYC 2683-716-1
USNO-A2.0USNO-A2 1200-14498553
HIPHIP 99124

→ Запросить дополнительные каталоги и обозначения от VizieR