Poчetna     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Улогуј се  
→ Adopt this star  

HD 202628


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Beyond the Iron Peak: r- and s-Process Elemental Abundances in Stars with Planets
We present elemental abundances of 118 stars (28 of which are knownextrasolar planetary host stars) observed as part of theAnglo-Australian Planet Search. Abundances of O, Mg, Cr, Y, Zr, Ba, Nd,and Eu (along with previously published abundances for C and Si) arepresented. This study is one of the first to specifically examineplanetary host stars for the heavy elements produced by neutron capturereactions. We find that the abundances in host stars are chemicallydifferent from both the standard solar abundances and the abundances innon-host stars in all elements studied, with enrichments over non-hoststars ranging from 0.06 dex (for O) to 0.11 dex (for Cr and Y). Suchabundance trends are in agreement with other previous studies of fieldstars and lead us to conclude that the chemical anomalies observed inplanetary host stars are the result of normal galactic chemicalevolution processes. Based on this observation, we conclude that theobserved chemical traits of planetary host stars are primordial inorigin, coming from the original nebula and not from a ``pollution''process occurring during or after formation, and that planet formationoccurs naturally with the evolution of stellar material.

The NaI D resonance lines in main-sequence late-type stars
We study the sodium D lines (D1: 5895.92Å D2: 5889.95Å) inlate-type dwarf stars. The stars have spectral types between F6 and M5.5(B - V between 0.457 and 1.807) and metallicity between [Fe/H] = -0.82and 0.6. We obtained medium-resolution echelle spectra using the 2.15-mtelescope at the Argentinian observatory Complejo Astronómico ElLeoncito (CASLEO). The observations have been performed periodicallysince 1999. The spectra were calibrated in wavelength and in flux. Adefinition of the pseudo-continuum level is found for all ourobservations. We also define a continuum level for calibration purposes.The equivalent width of the D lines is computed in detail for all ourspectra and related to the colour index (B - V) of the stars. Whenpossible, we perform a careful comparison with previous studies.Finally, we construct a spectral index (R'D) as the ratiobetween the flux in the D lines and the bolometric flux. We find that,once corrected for the photospheric contribution, this index can be usedas a chromospheric activity indicator in stars with a high level ofactivity. Additionally, we find that combining some of our results, weobtain a method to calibrate in flux stars of unknown colour.

Hα and the Ca II H and K lines as activity proxies for late-type stars
Context: The main chromospheric activity indicator is the S index, whichis the ratio of the flux in the core of the Ca II H and K lines to thecontinuum nearby, and is well studied for stars from F to K. Anotherchromospheric proxy is the Hα line, which is believed to betightly correlated with the Ca II index. Aims: In this work wecharacterize both chromospheric activity indicators, the one associatedwith the H and K Ca II lines and the other with Hα, for the wholerange of late type stars, from F to M. Methods: We present periodicmedium-resolution echelle observations covering the complete visualrange, taken at the CASLEO Argentinean Observatory over 7 years. We usea total of 917 flux-calibrated spectra for 109 stars that range from F6to M5. We statistically study these two indicators for stars ofdifferent activity levels and spectral types. Results: We directlyderive the conversion factor that translates the known S index to fluxin the Ca II cores, and extend its calibration to a wider spectralrange. We investigate the relation between the activity measurements inthe calcium and hydrogen lines, and found that the usual correlationobserved is the product of the dependence of each flux on stellarcolour, and not the product of similar activity phenomena.Tables 1 and 2 and full Figs. 1 and 6 are only available in electronicform at http://www.aanda.org

Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog
We derive detailed theoretical models for 1074 nearby stars from theSPOCS (Spectroscopic Properties of Cool Stars) Catalog. The Californiaand Carnegie Planet Search has obtained high-quality (R~=70,000-90,000,S/N~=300-500) echelle spectra of over 1000 nearby stars taken with theHamilton spectrograph at Lick Observatory, the HIRES spectrograph atKeck, and UCLES at the Anglo Australian Observatory. A uniform analysisof the high-resolution spectra has yielded precise stellar parameters(Teff, logg, vsini, [M/H], and individual elementalabundances for Fe, Ni, Si, Na, and Ti), enabling systematic erroranalyses and accurate theoretical stellar modeling. We have created alarge database of theoretical stellar evolution tracks using the YaleStellar Evolution Code (YREC) to match the observed parameters of theSPOCS stars. Our very dense grids of evolutionary tracks eliminate theneed for interpolation between stellar evolutionary tracks and allowprecise determinations of physical stellar parameters (mass, age,radius, size and mass of the convective zone, surface gravity, etc.).Combining our stellar models with the observed stellar atmosphericparameters and uncertainties, we compute the likelihood for each set ofstellar model parameters separated by uniform time steps along thestellar evolutionary tracks. The computed likelihoods are used for aBayesian analysis to derive posterior probability distribution functionsfor the physical stellar parameters of interest. We provide a catalog ofphysical parameters for 1074 stars that are based on a uniform set ofhigh-quality spectral observations, a uniform spectral reductionprocedure, and a uniform set of stellar evolutionary models. We explorethis catalog for various possible correlations between stellar andplanetary properties, which may help constrain the formation anddynamical histories of other planetary systems.

Search for associations containing young stars (SACY). I. Sample and searching method
We report results from a high-resolution optical spectroscopic surveyaimed to search for nearby young associations and young stars amongoptical counterparts of ROSAT All-Sky Survey X-ray sources in theSouthern Hemisphere. We selected 1953 late-type (B-V~≥~0.6),potentially young, optical counterparts out of a total of 9574 1RXSsources for follow-up observations. At least one high-resolutionspectrum was obtained for each of 1511 targets. This paper is the firstin a series presenting the results of the SACY survey. Here we describeour sample and our observations. We describe a convergence method in the(UVW) velocity space to find associations. As an example, we discuss thevalidity of this method in the framework of the β Pic Association.

An activity catalogue of southern stars
We have acquired high-resolution echelle spectra of 225 F6-M5 type starsin the Southern hemisphere. The stars are targets or candidates to betargets for the Anglo-Australian Planet Search. CaII H& K line coreswere used to derive activity indices for all of these objects. Theindices were converted to the Mt. Wilson system of measurements andlogR'HK values determined. A number of these stars had nopreviously derived activity indices. In addition, we have also includedthe stars from Tinney et al. using our Mt. Wilson calibration. Theradial-velocity instability (also known as jitter) level was determinedfor all 21 planet-host stars in our data set. We find the jitter to beat a level considerably below the radial-velocity signatures in all butone of these systems. 19 stars from our sample were found to be active(logR'HK > -4.5) and thus have high levels of jitter.Radial-velocity analysis for planetary companions to these stars shouldproceed with caution.

Metallicity and absolute magnitude calibrations for UBV photometry
Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).

The abundance distribution of stars with planets
We present the results of a uniform, high-precision spectroscopicmetallicity study of 136 G-type stars from the Anglo-Australian PlanetSearch, 20 of which are known to harbour extrasolar planets (as at 2005July). Abundances in Fe, C, Na, Al, Si, Ca, Ti and Ni are presented,along with Strömgen photometric metallicities. This study is one ofseveral recent studies examining the metallicities of a sample ofplanet-host and non-planet-host stars that were obtained from a singlesample, and analysed in an identical manner, providing an unbiasedestimate of the metallicity trends for planet-bearing stars. We findthat non-parametric tests of the distribution of metallicities forplanet-host and non-planet-host stars are significantly different at alevel of 99.4 per cent confidence. We confirm the previously observedtrend for planet-host stars to have higher mean metallicities thannon-planet-host stars, with a mean metallicity for planet-host stars of[Fe/H] = 0.06 +/- 0.03dex compared with [Fe/H] = -0.09 +/- 0.01dex fornon-host-stars in our sample. This enrichment is also seen in the otherelements studied. Based on our findings, we suggest that this observedenhancement is more likely a relic of the original gas cloud from whichthe star and its planets formed, rather than being due to `pollution' ofthe stellar photosphere.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars
Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

High-Resolution Spectroscopy of some Active Southern Stars
High-resolution échelle spectra of 42 nearby southern solar-typestars have been obtained, in a search for young, single, active, andrapidly rotating sun-like stars suitable for Doppler imaging and ZeemanDoppler imaging studies. As a result of this survey, 13 stars weredetermined to be youthful with ages less than 600Myr (Hyades age) andeight of these were found to have projected rotational velocities inexcess of 15kms-1. In addition, five spectroscopic binarysystems were identified. Of those stars observed for this survey, HD106506 is the most outstanding target for mapping active regions. It isan apparently young and single star with rapid rotation (v sin i~80kms-1), strong Hα chromospheric activity (logR'Hα~-4.2), and deformation of the spectral lineprofiles indicating the presence of large starspots.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Library of flux-calibrated echelle spectra of southern late-type dwarfs with different activity levels
We present Echelle spectra of 91 late-type dwarfs, of spectral typesfrom F to M and of different levels of chromospheric activity, obtainedwith the 2.15 m telescope of the CASLEO Observatory located in theArgentinean Andes. Our observations range from 3890 to 6690 Å, ata spectral resolution from 0.141 to 0.249 Å per pixel(R=λ/δ λ ≈ 26 400). The observations were fluxcalibrated with the aid of long slit spectra. A version of thecalibrated spectra is available via the World Wide Web.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699The spectra are available as FITS and ascii-files at the URL:http://www.iafe.uba.ar/cincunegui/spectra/Table2.html. They are alsoavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699. When convertingthe fits to ascii, the spectra were oversampled to a constant δλ ≈ 0.15 Å.Table 2 is also available in electronic form at the CDS via anonymous

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

The Wilson-Bappu effect: A tool to determine stellar distances
Wilson & Bappu (\cite{orig}) have shown the existence of aremarkable correlation between the width of the emission in the core ofthe K line of Ca II and the absolute visual magnitude of late-typestars.Here we present a new calibration of the Wilson-Bappu effect based on asample of 119 nearby stars. We use, for the first time, widthmeasurements based on high resolution and high signal to noise ratio CCDspectra and absolute visual magnitudes from the Hipparcos database.Our primary goal is to investigate the possibility of using theWilson-Bappu effect to determine accurate distances to single stars andgroups.The result of our calibration fitting of the Wilson-Bappu relationshipis MV=33.2-18.0 log W0, and the determinationseems free of systematic effects. The root mean square error of thefitting is 0.6 mag. This error is mostly accounted for by measurementerrors and intrinsic variability of W0, but in addition apossible dependence on the metallicity is found, which becomes clearlynoticeable for metallicities below [Fe/H] ~ -0.4. This detection ispossible because in our sample [Fe/H] ranges from -1.5 to 0.4.The Wilson-Bappu effect can be used confidently for all metallicitiesnot lower than ~ -0.4, including the LMC. While it does not provideaccurate distances to single stars, it is a useful tool to determineaccurate distances to clusters and aggregates, where a sufficient numberof stars can be observed.We apply the Wilson-Bappu effect to published data of the open cluster M67; the retrieved distance modulus is of 9.65 mag, in very goodagreement with the best distance estimations for this cluster, based onmain sequence fitting.Observations collected at ESO, La Silla.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

New Metallicity Calibration Down to [Fe/H] = -2.75 dex
We have taken 88 dwarfs, covering the colour-index interval 0.37 <=(B-V)0 <= 1.07mag, with metallicities -2.70 <= [Fe/H]<= +0.26dex, from three different sources for new metallicitycalibration. The catalogue of Cayrel de Stroble et al. (2001), whichincludes 65% of the stars in our sample, supplies detailed informationon abundances for stars with determination based on high-resolutionspectroscopy. In constructing the new calibration we have used as`corner stones' 77 stars which supply at least one of the followingconditions: (i) the parallax is larger than 10mas (distance relative tothe Sun less than 100pc) and the galactic latitude is absolutely higherthan 30° (ii) the parallax is rather large, if the galactic latitudeis absolutely low and vice versa. Contrary to previous investigations, athird-degree polynomial is fitted for the new calibration: [Fe/H]=0.10 -2.76δ - 24.04δ2 + 30.00δ3. Thecoefficients were evaluated by the least-squares method, without regardto the metallicity of Hyades. However, the constant term is in the rangeof metallicity determined for this cluster, i.e.0.08<=[Fe/H]<=0.11dex. The mean deviation and the mean error inour work are equal to those of Carney (1979), for [Fe/H] >= -1.75dexwhere Carney's calibration is valid

Extrasolar planets around HD 196050, HD 216437 and HD 160691
We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Echelle spectroscopy of Caii HK activity in Southern Hemisphere planet search targets
We present the results of ultraviolet echelle spectroscopy of a sampleof 59 F, G, K and M stars from the Anglo-Australian Planet Search targetlist. Caii activity indices, which are essential in the interpretationof planet detection claims, have been determined for these stars andplaced on the Mount Wilson R 'HK system.

Chromospherically young, kinematically old stars
We have investigated a group of stars known to have low chromosphericages, but high kinematical ages. Isochrone, chemical and lithium agesare estimated for them. The majority of stars in this group show lithiumabundances much smaller than expected for their chromospheric ages,which is interpreted as an indication of their old age. Radial velocitymeasurements in the literature also show that they are not closebinaries. The results suggest that they can be formed from thecoalescence of short-period binaries. Coalescence rates, calculatedtaking into account several observational data and a maximum theoreticaltime scale for contact, in a short-period pair, predict a number ofcoalesced stars similar to what we have found in the solarneighbourhood.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

The Relative Age of the Thin and Thick Galactic Disks
We determine the relative ages of the open cluster NGC 188 and selectedHipparcos field stars by isochrone fitting and compare them to the ageof the thick-disk globular cluster 47 Tuc. The best-fit age for NGC 188was determined to be 6.5+/-1.0 Gyr. The solar-metallicity Hipparcosfield stars yielded a slightly older thin-disk age, 7.5+/-0.7 Gyr. Twoslightly metal-poor ([Fe/H]=-0.22) field stars whose kinematic andorbital parameters indicate that they are members of the thin disk werefound to have an age of 9.7+/-0.6 Gyr. The age for 47 Tuc was determinedto be 12.5+/-1.5 Gyr. All errors are internal errors due to theuncertainty in the values of metallicity and reddening. Thus, the oldeststars dated in the thin disk are found to be 2.8+/-1.6 Gyr younger than47 Tuc. Furthermore, as discussed by Chaboyer, Sarajedini, &Armandroff, 47 Tuc has a similar age to three globular clusters locatedin the inner part of the Galactic halo, implying that star formation inthe thin disk started within 2.8+/-1.6 Gyr of star formation in thehalo.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Микроскоп
Ректацензија:21h18m27.27s
Deклинација:-43°20'04.7"
Apparent магнитуда:6.751
Даљина:23.787 parsecs
Proper motion RA:243.2
Proper motion Dec:21.5
B-T magnitude:7.525
V-T magnitude:6.815

Каталог и designations:
Proper имена
HD 1989HD 202628
TYCHO-2 2000TYC 7978-1128-1
USNO-A2.0USNO-A2 0450-39622492
HIPHIP 105184

→ Захтевај још каталога од VizieR