Home     Evrende yaþayabilmek için    
Services
    Niçin Edinmelisiniz     En fazla Destek olanlar     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Giriþ  
→ Adopt this star  

HD 26421


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Beryllium Abundances in Stars of One Solar Mass
We have determined Be abundances in 50 F and G dwarfs in the mass rangeof 0.9 <= M sun <= 1.1 as determined by Lambert &Reddy. The effective temperatures are 5600-6400 K and metallicities from-0.65 to +0.11. The spectra were taken primarily with Keck I +HIRES. The Be abundances were found via spectral synthesis of Be IIlines near 3130 Å. The Be abundances were investigated as afunction of age, temperature, metallicity, and Li abundance in thisnarrow mass range. Even though our stars are similar in mass, they showa range in Be abundances of a factor of >40. We find that [Be/Fe] hasno dependence on temperature, but does show a spread of a factor of 6 ata given temperature. The reality of the spread is shown by two identicalstars that differ from each other by a factor of 2 only in theirabundances of Li and Be. Our thin-disk star sample fits the trendbetween Be abundance and [Fe/H] found for halo and thick-disk stars,extending it to about 4 orders of magnitude in the two logarithmicquantities. Both Fe and Be appear to increase similarly over time in theGalaxy. One-third of our sample may be classified as subgiants; thesemore evolved stars have lower Be abundances than the dwarfs. They haveundergone Be depletion by slow mixing on the main sequence and Bedilution during their trip toward the red giant base. There are both Liand Be detections in 60 field stars in the "Li-plateau" of 5900-6300 Know and the abundances of the two light elements are correlated with aslope of 0.34 ± 0.05, with greater Li depletion than Bedepletion.

Oxygen abundances in nearby stars. Clues to the formation and evolution of the Galactic disk
The abundances of iron and oxygen are homogeneously determined in asample of 523 nearby (d<150 pc) FGK disk and halo stars withmetallicities in the range -1.5<[Fe/H]<0.5. Iron abundances wereobtained from an LTE analysis of a large set of Fe I and Fe II lineswith reliable atomic data. Oxygen abundances were inferred from arestricted non-LTE analysis of the 777 nm O I triplet. We adopted theinfrared flux method temperature scale and surface gravities based onHipparcos trigonometric parallaxes. Within this framework, theionization balance of iron lines is not satisfied: the mean abundancesfrom the Fe I lines are systematically lower by 0.06 dex than those fromthe Fe II lines for dwarf stars of Teff>5500 K and[Fe/H]<0.0, and giant stars of all temperatures and metallicitiescovered by our sample. The discrepancy worsens for cooler and metal-richmain-sequence stars. We use the stellar kinematics to compute theprobabilities of our sample stars to be members of the thin disk, thickdisk, or halo of the Galaxy. We find that the majority of thekinematically-selected thick-disk stars show larger [O/Fe] ratioscompared to thin-disk stars while the rest show thin-disk abundances,which suggests that the latter are thin-disk members with unusual(hotter) kinematics. A close examination of this pattern for disk starswith ambiguous probabilities shows that an intermediate population withproperties between those of the thin and thick disks does not exist, atleast in the solar neighborhood. Excluding the stars with unusualkinematics, we find that thick-disk stars show slowly decreasing [O/Fe]ratios from about 0.5 to 0.4 in the -0.8<[Fe/H]<-0.3 range. Usinga simple model for the chemical evolution of the thick disk we show thatthis trend results directly from the metallicity dependence of the TypeII supernova yields. At [Fe/H]>-0.3, we find no obvious indication ofa sudden decrease (i.e., a "knee") in the [O/Fe] vs. [Fe/H] pattern ofthick-disk stars that would connect the thick and thin disk trends at ahigh metallicity. We conclude that Type Ia supernovae (SN Ia) did notcontribute significantly to the chemical enrichment of the thick disk.In the -0.8<[Fe/H]<+0.3 range, thin-disk stars show decreasing[O/Fe] ratios from about 0.4 to 0.0 that require a SN Ia contribution.The implications of these results for studies of the formation andevolution of the Galactic disk are discussed.Tables 4-6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/465/271 Partially based onobservations obtained with the Hobby-Eberly Telescope, which is a jointproject of the University of Texas at Austin, the Pennsylvania StateUniversity, Stanford University, Ludwig-Maximilians-UniversitätMünchen, and Georg-August-Universität Göttingen; and datafrom the UVES Paranal Observatory Project (ESO DDT Program ID266.D-5655).

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The Nature of Overluminous F Stars Observed in a Radial-Velocity Survey
We have conducted a radial-velocity survey of bright (V<9),overluminous, F stars within 80 pc. The criterion of overluminosity isΔMc0=Mc0-MV>=0.5,where MV is the absolute magnitude based on the Hipparcosparallax and Mc0 is the absolute magnitude fromuvby photometry. For F stars, overluminosity at a level ofΔMc0>0.15 has been argued to beindicative of the presence of a bright companion, so many of theoverluminous ``single'' F stars are expected to be, in fact, binarieswith comparably bright components. Therefore, the main goals of thesurvey have been to gain insight into the nature of overluminous F starsand to test specifically the hypothesis of the duplicity of overluminousF stars by searching for previously unrecognized binary stars amongthem. Other goals of this project included the determination, whereverpossible, of the orbits of the binaries discovered as a result of thesurvey and comparing the properties of the binaries with those of thevisually single stars with constant radial velocity. The program listcomprised 111 stars that appear in the Hipparcos catalog as single, plusseven members of multiple systems whose components have individualentries in the catalog.Of the total of 118 stars selected, the radial velocities of 77 havebeen measured with the Cambridge CORAVEL in the present survey. Amongthe remainder, six have not allowed us to determine their radialvelocities because of the weakness or lack of a ``dip'' in theirradial-velocity traces, and one was optically inaccessible to thetelescope. All the rest proved to be sufficiently well known alreadyeither as binary or as constant-radial-velocity (CRV) stars. The surveydiscovered 25 new binary systems, not counting two that were notgenerally known as such but were already under observation by R. F. G.and two that were discovered by Hipparcos to show eclipses but had neverbeen recognized as SBs. With the previously known binaries, there is atotal of 61 definite plus three probable binaries out of a total of 111stars upon which we can adjudicate-a binary fraction of ~58%, justdouble the ~29% found in a sample of randomly selected F stars byNordström et al. (1997). Of the binaries, 52 are SB2 and 12 areSB1. Orbits (some of them still rather preliminary) have been determinedfor the first time for 28 binaries, 21 of which are SB2.Comparison of the CRV stars (a total of 47) with the SB2 binaries hasshown that the two groups have different kinematics. The differenceimplies that on average the CRV stars are 3 to 4 Gyr older than theSB2s, although several of the CRVs appear to be very young. At the sametime the SB2 stars turn out to have about the same kinematics, hence thesame average age, as both binary and normal single F stars from acontrol sample drawn from the Hipparcos catalog. The much older age ofthe bulk of the overluminous CRV F stars may be indicative of anomalousstellar evolution that results in anomalously long main-sequencelifetimes for those stars. The SB1 stars appear to be closer to the CRVsthan to the SB2s and are probably also very old. The properties of the``no-dip'' stars suggest very young age; some of the stars are probablypre-main-sequence (PMS). A few PMS candidates have been identified alsoamong the CRV stars. Thus, overluminous F stars comprising our sampleappear to consist of three distinct groups: mostly young SB2 binarieswith comparably bright components, mostly very old CRV and SB1 stars,and very young no-dip stars.

The chemical compositions of Galactic disc F and G dwarfs
Photospheric abundances are presented for 27 elements from carbon toeuropium in 181 F and G dwarfs from a differential local thermodynamicequilibrium (LTE) analysis of high-resolution and high signal-to-noiseratio spectra. Stellar effective temperatures (Teff) wereadopted from an infrared flux method calibration of Strömgrenphotometry. Stellar surface gravities (g) were calculated from Hipparcosparallaxes and stellar evolutionary tracks. Adopted Teff andg values are in good agreement with spectroscopic estimates. Stellarages were determined from evolutionary tracks. Stellar space motions (U,V, W) and a Galactic potential were used to estimate Galactic orbitalparameters. These show that the vast majority of the stars belong to theGalactic thin disc.Relative abundances expressed as [X/Fe] generally confirm previouslypublished results. We give results for C, N, O, Na, Mg, Al, Si, S, K,Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu. Theα elements - O, Mg, Si, Ca and Ti - show [α/Fe] to increaseslightly with decreasing [Fe/H]. Heavy elements with dominantcontributions at solar metallicity from the s-process show [s/Fe] todecrease slightly with decreasing [Fe/H]. Scatter in [X/Fe] at a fixed[Fe/H] is entirely attributable to the small measurement errors, afterexcluding the few thick disc stars and the s-process-enriched CHsubgiants. Tight limits are set on `cosmic' scatter. If a weak trendwith [Fe/H] is taken into account, the composition of a thin disc starexpressed as [X/Fe] is independent of the star's age and birthplace forelements contributed in different proportions by massive stars (Type IIsupernovae), exploding white dwarfs (Type Ia supernovae) and asymptoticred giant branch stars.By combining our sample with various published studies, comparisonsbetween thin and thick disc stars are made. In this composite sample,thick disc stars are primarily identified by their VLSR inthe range -40 to -100 km s-1. These are very old stars withorigins in the inner Galaxy and metallicities [Fe/H]<=-0.4. At thesame [Fe/H], the sampled thin disc stars have VLSR~ 0 kms-1, and are generally younger with a birthplace at about theSun's Galactocentric distance. In the range -0.35 >=[Fe/H]>=-0.70,well represented by present thin and thick disc samples, [X/Fe] of thethick disc stars is greater than that of thin disc stars for Mg, Al, Si,Ca, Ti and Eu. [X/Fe] is very similar for the thin and thick disc for -notably - Na and iron-group elements. Barium ([Ba/Fe]) may beunderabundant in thick relative to thin disc stars. These results extendprevious ideas about composition differences between the thin and thickdisc.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Photoelectric Vilnius Photometry of Hipparcos Turn-Off Region Stars
Seven-color photometry in the Vilnius system and photometricclassification in terms of spectral type, absolute magnitude andmetallicity are presented for 145 Hipparcos stars of the turn-offregion, most of which have parallaxes determined to an accuracy of atleast 15%. The stars selected for the observing program included thoseidentified kinematically as intermediate between the thin disk and halo,plus a number of weak-lined stars discovered previously from objectiveprism surveys. The metallicity distribution we find for a kinematicallydefined sample of possible members of the thick disk has a meanabundance [Fe/H]= --0.3 dex and a dispersion of 0.3 dex. Our data seemto suggest a large age for this intermediate population.

Mesures de vitesses radiales. VIII. Accompagnement AU sol DU programme d'observation DU satellite HIPPARCOS
We publish 1879 radial velocities of stars distributed in 105 fields of4^{\circ} \times 4^{\circ}. We continue the PPO series \cite[(Fehrenbachet al. 1987;]{Feh87} \cite[Duflot et al. 1990, 1992 and 1995),]{Du90}using the Fehrenbach objective prism method. Table 1 only available inelectronic form at CDS via to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Kahraman
Sað Açýklýk:04h12m22.95s
Yükselim:+37°42'43.5"
Görünürdeki Parlaklýk:8.199
Uzaklýk:78.431 parsek
özdevim Sað Açýklýk:117.4
özdevim Yükselim:96.2
B-T magnitude:8.867
V-T magnitude:8.255

Kataloglar ve belirtme:
Özgün isimleri
HD 1989HD 26421
TYCHO-2 2000TYC 2878-1108-1
USNO-A2.0USNO-A2 1275-03042291
HIPHIP 19631

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin