Home     Evrende yaþayabilmek için    
Services
    Niçin Edinmelisiniz     En fazla Destek olanlar     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Giriþ  
→ Adopt this star  

HD 35850


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

A Comparative Study of Flaring Loops in Active Stars
Dynamo activity in stars of different types is expected to generatemagnetic fields with different characteristics. As a result, adifferential study of the characteristics of magnetic loops in a broadsample of stars may yield information about dynamo systematics. In theabsence of direct imaging, certain physical parameters of a stellarmagnetic loop can be extracted if a flare occurs in that loop. In thispaper we employ a simple nonhydrodynamic approach introduced by Haisch,to analyze a homogeneous sample of all of the flares we could identifyin the EUVE DS database: a total of 134 flares that occurred on 44 starsranging in spectral type from F to M and in luminosity class from V toIII. All of the flare light curves that have been used in the presentstudy were obtained by a single instrument (EUVE DS). For each flare, wehave applied Haisch's simplified approach (HSA) in order to determineloop length, temperature, electron density, and magnetic field. For eachof our target stars, a literature survey has been performed to determinequantitatively the extent to which our results are consistent withindependent studies. The results obtained by HSA are found to be wellsupported by results obtained by other methods. Our survey suggeststhat, on the main sequence, short loops (with lengths<=0.5R*) may be found in stars of all classes, while thelargest loops (with lengths up to 2R*) appear to be confinedto M dwarfs. Based on EUVE data, the transition from small to largeloops on the main sequence appears to occur between spectral types K2and M0. We discuss the implications of this result for dynamo theories.

High-Resolution Spectroscopy of some Active Southern Stars
High-resolution échelle spectra of 42 nearby southern solar-typestars have been obtained, in a search for young, single, active, andrapidly rotating sun-like stars suitable for Doppler imaging and ZeemanDoppler imaging studies. As a result of this survey, 13 stars weredetermined to be youthful with ages less than 600Myr (Hyades age) andeight of these were found to have projected rotational velocities inexcess of 15kms-1. In addition, five spectroscopic binarysystems were identified. Of those stars observed for this survey, HD106506 is the most outstanding target for mapping active regions. It isan apparently young and single star with rapid rotation (v sin i~80kms-1), strong Hα chromospheric activity (logR'Hα~-4.2), and deformation of the spectral lineprofiles indicating the presence of large starspots.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

An 850 μm Survey for Dust around Solar-Mass Stars
We present the results of an 850 μm JCMT/SCUBA survey for dust around13 nearby solar-mass stars. The dust mass sensitivity ranged from5×10-3 to 0.16 M⊕. Three sources weredetected in the survey, one of which (HD 107146) has been previouslyreported. One of the other two submillimeter sources, HD 104860, was notdetected by IRAS and is surrounded by a cold, massive dust disk with adust temperature and mass of Tdust=33 K andMdust=0.16 M⊕, respectively. The thirdsource, HD 8907, was detected by IRAS and ISO at 60-87 μm and has adust temperature and mass of Tdust=48 K andMdust=0.036 M⊕, respectively. We find thatthe deduced masses and radii of the dust disks in our sample are roughlyconsistent with models for the collisional evolution of planetesimaldisks with embedded planets. We also searched for residual gas in two ofthe three systems with detected submillimeter excesses and place limitson the mass of gas residing in these systems. When the propertiesmeasured for the detected excess sources are combined with the largerpopulation of submillimeter excess sources from the literature, we findstrong evidence that the mass in small grains declines significantly ona ~200 Myr timescale, approximately inversely with age. However, we alsofind that the characteristic dust radii of the population, obtained fromthe dust temperature of the excess and assuming blackbody grains, isuncorrelated with age. This is in contrast to self-stirred collisionalmodels for debris disk evolution, which predict a trend of radiusincreasing with age tage~R3d. The lackof agreement suggests that processes beyond self-stirring, such as giantplanet formation, play a role in the evolutionary histories ofplanetesimal disks.

An Infrared Coronagraphic Survey for Substellar Companions
We have used the F160W filter (1.4-1.8 μm) and the coronagraph on theNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) on theHubble Space Telescope to survey 45 single stars with a median age of0.15 Gyr, an average distance of 30 pc, and an average H magnitude of 7mag. For the median age we were capable of detecting a 30MJcompanion at separations between 15 and 200 AU. A 5MJ objectcould have been detected at 30 AU around 36% of our primaries. Forseveral of our targets that were less than 30 Myr old, the lower masslimit was as low as 1MJ, well into the high mass planetregion. Results of the entire survey include the proper-motionverification of five low-mass stellar companions, two brown dwarfs(HR7329B and TWA5B), and one possible brown dwarf binary (Gl 577B/C).

Evolution of Cold Circumstellar Dust around Solar-type Stars
We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.

A Multiwavelength Study of CC Eridani
Radio and optical observations from December 2001 and January 2002 ofthe active RS CVn-like binary CC Eri are presented. The star wasmonitored at 4.80 and 8.64GHz over 3×12h allocations with theAustralia Telescope Compact Array on 28 to 30 December 2001. TheAnglo-Australian Telescope was used for simultaneous opticalspectropolarimetry during a 0.5h period on 30 December. Data from fournights of broadband photometry gathered around the same period are alsoincluded in this present multiwavelength study. The low levels of radioemission were circularly polarised at ~20% with slightly positivespectral indices of ~0.26. Two flare-like increases were observed onsuccessive nights with steep positive spectral indices and no detectablepolarisation. Cross-correlation analysis of the 4.80 and 8.64GHzintensities over the stronger flare showed that the higher frequencyemission preceded that at the lower frequency by ~5min, a resultconsistent with the propagation of a hydromagnetic disturbance outwardsthrough the corona. On the same night, a significant cross-correlationin the `quiescent' emission indicates the presence of micro-flaring,although its low intensity does not permit the evaluation of a timedelay. The emission parameters on the three nights are compatible with agyrosyncrotron mechanism, in which the radio source becomes opticallythick during strong flaring. We develop a simple model, which is basedon assuming that the number of radiating electrons is a given functionof the magnetic field in the source region, and derive feasible valuesfor the field, source radius, and number of emitting electrons, whichare not strongly dependent on the field modelling function or the aspectratio of the source. Spectropolarimetry demonstrates the presence of astrong surface magnetic field. Optical photometry, covering a sufficientamount of the orbit, indicates a maculation region of significant size(~14° radius). The results help develop a three-dimensional pictureof a large stellar magnetically active region and encourage moredetailed follow-up multiwavelength studies of this and similar stars.

Young Stars Near the Sun
Until the late 1990s the rich Hyades and the sparse UMa clusters werethe only coeval, comoving concentrations of stars known within 60 pc ofEarth. Both are hundreds of millions of years old. Then beginning in thelate 1990s the TW Hydrae Association, the Tucana/Horologium Association,the Pictoris Moving Group, and the AB Doradus Moving Group wereidentified within 60 pc of Earth, and the Chamaeleontis cluster wasfound at 97 pc. These young groups (ages 8 50 Myr), along with othernearby, young stars, will enable imaging and spectroscopic studies ofthe origin and early evolution of planetary systems.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

On Ca II Emission as an Indicator of the Age of Young Stars
Chromospheric emission in the Ca II H and K lines has often been used asan age diagnostic for solar mass stars. For 20 such stars with ages lessthan a few hundred megayears, we compare Ca II ages derived by Wright etal. with ages we derive based on a combination of lithium abundance,X-ray activity, and Galactic space motion. Typically, the Ca II ages arenoticeably older than the lithium/X-ray ages, suggesting that arecalibration of the Ca II ages may be necessary.

New Aspects of the Formation of the β Pictoris Moving Group
In a previous work, we explored the possibility that the β Pictorismoving group (BPMG), consisting of low-mass post-T Tauri stars, wasformed near the Scorpius-Centaurus OB association. The cause of theformation could be a Type II supernova exploding either in LowerCentaurus Crux (LCC) or the Upper Centaurus Lupus (UCL), the two oldersubgroups of that association. Here we present new results for BPMG. Amore detailed analysis of the orbit confinement in this group leads to astar distribution pattern at birth that can be considered as arepresentation of the density distribution in the natal cloud. We alsopropose a plausible origin for the supernova that could have triggeredthe star formation in BPMG by finding the past position of the runawaystar HIP 46950. We find that this scenario is capable of explaining theorigin of all the members of BPMG proposed by Zuckerman and coworkersand by Song and coworkers, with the exception of HIP 79881, which isprobably an old main-sequence interloper.

A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars
We present results from a James Clerk Maxwell Telescope/SCUBA 850 μmsearch for cold dust around eight nearby young stars belonging to theβ Pic (t~12 Myr) and the Local Association (t~50 Myr) movinggroups. Unlike most past submillimeter studies, our sample was chosensolely on the basis of stellar age. Our observations achieve about anorder of magnitude greater sensitivity in dust mass compared to previouswork in this age range. We detected two of the three M dwarfs in oursample at 850 μm, GJ 182 and GJ 803 (M*~0.5Msolar), with inferred dust masses of only ~0.01-0.03M⊕. GJ 182 may also possess a 25 μm excess, which isindicative of warm dust in the inner few AU of its disk. For GJ 803 (AUMic; HD 197481), submillimeter mapping finds that the 850 μm emissionis unresolved. A nondetection of the CO 3-2 line indicates the system isgas-poor, and the spectral energy distribution suggests the presence ofa large inner disk hole (~17AU=1.7" in radius for blackbody grains).These are possible indications that planets at large separations canform around M dwarfs within ~10 Myr. In a companion paper, we confirmthe existence of a dust disk around GJ 803 using optical coronagraphicimaging. Given its youthfulness, proximity, and detectability, the GJ803 disk will be a valuable system for studying disk, and perhapsplanet, formation in great detail. Overall, submillimeter measurementsof debris disks point to a drop in dust mass by a factor of~103 within the first ~10 Myr, with the subsequent decline inthe masses of submillimeter-detected disks consistent witht-0.5-t-1.

Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope
Submillimeter and near-infrared images of cool dusty debris disks andrings suggest the existence of unseen planets. At dusty but nonimagedstars, semimajor axes of associated planets can be estimated from thedust temperature. For some young stars these semimajor axes are greaterthan 1" as seen from Earth. Such stars are excellent targets forsensitive near-infrared imaging searches for warm planets. To probe thefull extent of the dust and hence of potential planetary orbits, Spitzerobservations should include measurements with the 160 μm filter.

The close binary system SU Ind
Photometric data on the southern mid-F type close eclipsing binarysystem SU Ind from the Carter Observatory (NZ) were examined, togetherwith a light curve obtained from the Hipparcos Epoch Photometry (HEP)database. The system appears detached, although appreciably evolved fromthe Zero Age Main Sequence. The HEP period must be accurate for its ownepoch, but it is significantly different from the reference (Hoffmeister1956) value. This is difficult to explain, given the uncomplicatednature of the light curve. The apparent discrepancy can be reconciledwith a period that has remained almost constant over the 40 yearinterval between the epochs by assuming some confusion between thealmost equal depth minima. The near-equality of components raises issuesof determinacy in light curve analysis, which are reviewed against thepresentation of relevant numerical curve-fitting details. The system isof physical interest, in that it is close to the start of the `active'range of spectral types. Its stars have relatively rapid rotation speedsand probably shallow convective sub-photospheric layers.

X-ray astronomy of stellar coronae
X-ray emission from stars in the cool half of the Hertzsprung-Russelldiagram is generally attributed to the presence of a magnetic coronathat contains plasma at temperatures exceeding 1 million K. Coronae areubiquitous among these stars, yet many fundamental mechanisms operatingin their magnetic fields still elude an interpretation through adetailed physical description. Stellar X-ray astronomy is thereforecontributing toward a deeper understanding of the generation of magneticfields in magnetohydrodynamic dynamos, the release of energy in tenuousastrophysical plasmas through various plasma-physical processes, and theinteractions of high-energy radiation with the stellar environment.Stellar X-ray emission also provides important diagnostics to study thestructure and evolution of stellar magnetic fields from the first daysof a protostellar life to the latest stages of stellar evolution amonggiants and supergiants. The discipline of stellar coronal X-rayastronomy has now reached a level of sophistication that makes tests ofadvanced theories in stellar physics possible. This development is basedon the rapidly advancing instrumental possibilities that today allow usto obtain images with sub-arcsecond resolution and spectra withresolving powers exceeding 1000. High-resolution X-ray spectroscopy has,in fact, opened new windows into astrophysical sources, and has played afundamental role in coronal research.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Towards understanding the β Pictoris dust stream
The recent radar detection by \citet{baggaley-2000} of a collimatedstream of interstellar meteoroids postulated to be sourced at βPictoris, a nearby star with a prominent dust disk, presents a challengeto theoreticians. Two mechanisms of possible dust ejection from βPic have been proposed: ejection of dust by radiation pressure fromcomets in eccentric orbits and by gravity of a hypothetical planet inthe disk. Here we re-examine observational data and reconsidertheoretical scenarios, substantiating them with detailed modeling totest whether they can explain quantitatively and simultaneously themasses, speeds, and fluxes. Our analysis of the stream geometry andkinematics confirms that β Pic is the most likely source of thestream and suggests that an intensive dust ejection phase took place˜0.7 Myr ago. Our dynamical simulations show that high ejectionspeeds retrieved from the observations can be explained by bothplanetary ejection and radiation pressure mechanisms, providing,however, several important constraints. In the planetary ejectionscenario, only a ``hot Jupiter''-type planet with a semimajor axis ofless than 1 AU can be responsible for the stream, and only if the diskwas dynamically ``heated'' by a more distant massive planet. Theradiation pressure scenario also requires the presence of a relativelymassive planet at several AU or more, that had heated the cometesimaldisk before the ejection occurred. Finally, the dust flux measured atEarth can be brought into reasonable agreement with both scenarios,provided that β Pic's protoplanetary disk recently passed throughan intensive short-lasting (˜0.1 Myr) clearance stage by nascentgiant planets, similar to what took place in the early solar system.

Library of flux-calibrated echelle spectra of southern late-type dwarfs with different activity levels
We present Echelle spectra of 91 late-type dwarfs, of spectral typesfrom F to M and of different levels of chromospheric activity, obtainedwith the 2.15 m telescope of the CASLEO Observatory located in theArgentinean Andes. Our observations range from 3890 to 6690 Å, ata spectral resolution from 0.141 to 0.249 Å per pixel(R=λ/δ λ ≈ 26 400). The observations were fluxcalibrated with the aid of long slit spectra. A version of thecalibrated spectra is available via the World Wide Web.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699The spectra are available as FITS and ascii-files at the URL:http://www.iafe.uba.ar/cincunegui/spectra/Table2.html. They are alsoavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699. When convertingthe fits to ascii, the spectra were oversampled to a constant δλ ≈ 0.15 Å.Table 2 is also available in electronic form at the CDS via anonymous

Field zero-age main-sequence stars in the solar neighbourhood: where have they come from?
In the course of an all-sky survey for young stars in the solarneighbourhood, we have found a tight kinematic group of 10 F-G typezero-age main-sequence stars in the field. Here we discuss the origin ofthese stars. Backtracking the space motions of these stars, we arguethat likely candidates for the parent association are the Perseus OB3(Per OB3), Upper Centaurus-Lupus (UCL) and Lower Centaurus-Crux (LCC)associations, and that we are witnessing the ongoing diffusion of (atleast one of) these associations into the field.

Photometry of HR 1817 at Two Sites Well Separated in Longitude
Not Available

New Members of the TW Hydrae Association, β Pictoris Moving Group, and Tucana/Horologium Association
We have identified five new members of the TW Hydrae association (TWA),11 new members of the β Pic moving group, and 11 newTucana/Horologium association members. These are the three youngest(<~30 Myr) known kinematic stellar groups near the Earth. Newlyidentified β Pic group members are located mostly in the northernhemisphere, and they have a slightly different U-component of Galacticvelocity compared to that of previously known members. Tracing themotion of β Pic members backward in time for 12 Myr indicates thatthey might have formed in a small region with an initial velocitydispersion of ~8 km s-1. A couple of mid-M spectral typeβ Pic members show emission features [He Iλ5876+λ6678) and Na D λ5890+λ5896)] seenamong earlier spectral type stars in the TWA and β Pic groups. Toderive the distances of the non-Hipparcos members of these groups, wehave constructed a V-K versus MK color-magnitude diagram thatis very useful in separating young K/M stars from older main-sequencecounterparts and constraining theoretical pre-main-sequence evolutionarytracks. All newly identified K- and M-type members of the three groupsshow saturated X-ray activity(LX/Lbol~10-3). One newly identifiedTWA member, SSS 101727-5354, is estimated to be only 22 pc away fromEarth. Its extreme youth, late spectral type (~M5), and proximity toEarth make SSS 101727-5354 perhaps the best target for direct imagingdetection of cooling planets.

Age Dependence of the Vega Phenomenon: Observations
We study the time dependency of Vega-like excesses using infraredstudies obtained with the imaging photopolarimeter ISOPHOT on board theInfrared Space Observatory. We review the different studies published onthis issue and critically check and revise ages and fractionalluminosities in the different samples. The conclusions of our studydiffer significantly from those obtained by other authors (e.g., Hollandand coworkers; Spangler and coworkers), who suggested that there is aglobal power law governing the amount of dust seen in debris disks as afunction of time. Our investigations lead us to conclude that (1) forstars at most ages, a large spread in fractional luminosity occurs, but(2) there are few very young stars with intermediate or small excesses;(3) the maximum excess seen in stars of a given age is aboutfd~10-3, independent of time; and (4) Vega-likeexcess is more common in young stars than in old stars.

An infrared imaging search for low-mass companions to members of the young nearby β Pic and Tucana/Horologium associations
We present deep high dynamic range infrared images of young nearby starsin the Tucana/Horologium and β Pic associations, all ˜ 10 to 35Myrs young and at ˜ 10 to 60 pc distance. Such young nearby starsare well-suited for direct imaging searches for brown dwarf and evenplanetary companions, because young sub-stellar objects are stillself-luminous due to contraction and accretion. We performed ourobservations at the ESO 3.5m NTT with the normal infrared imagingdetector SofI and the MPE speckle camera Sharp-I. Three arc sec north ofGSC 8047-0232 in Horologium a promising brown dwarf companion candidateis detected, which needs to be confirmed by proper motion and/orspectroscopy. Several other faint companion candidates are alreadyrejected by second epoch imaging. Among 21 stars observed inTucana/Horologium, there are not more than one to five brown dwarfcompanions outside of 75 AU (1.5'' at 50 pc); most certainly only <=5% of the Tuc/HorA stars have brown dwarf companions (13 to 78 Jupitermasses) outside of 75 AU. For the first time, we can report an upperlimit for the frequency of massive planets (˜ 10 Mjup) atwide separations (˜ 100 AU) using a meaningfull and homogeneoussample: Of 11 stars observed sufficiently deep in β Pic (12 Myrs),not more than one has a massive planet outside of ˜ 100 AU, i.e.massive planets at large separations are rare (<= 9%).Based on observations obtained on La Silla, Chile, in ESO programs65.L-0144(B), 66.D-0135, 66.C-0310(A), 67.C-0209(B), 67.C-0213(A),68.C-0008(A), and 68.C-0009(A)} }

The 100 Brightest X-Ray Stars within 50 Parsecs of the Sun
Based on the Hipparcos and Tycho-2 astrometric catalogs and the ROSATsurveys, a sample of 100 stars most luminous in X-rays within or arounda distance of 50 pc is culled. The smallest X-ray luminosity in thesample, in units of 1029 ergs s-1, isLX=9.8 the strongest source in the solar neighborhood is IIPeg, a RS CVn star, at LX=175.8. With respect to the originof X-ray emission, the sample is divided into partly overlapping classesof pre-main-sequence, post-T Tauri, and very young ZAMS objects (typeXY), RS CVn-type binary stars (type RS), other active short-periodbinaries, including binary BY Dra-type objects (type XO), apparentlysingle or long-period binary active evolved stars (type XG), contactbinaries of WU UMa kind (type WU), apparently single or long-periodbinary variable stars of BY Dra kind (type BY), and objects of unknownnature (type X?). Chromospherically active, short-period binaries (RSand XO) make up 40% of the brightest X-ray emitters, followed by youngstars (XY) at 30% and unknown sources (X?) at 15%. The fraction ofspectroscopically single evolved X-ray emitters of spectral classes IVand III is quite large (10%). The sources identified as RS CVn-typestars (RS, 23 objects) are considerably stronger in X-ray than theXY-objects and the other active binaries (XO and WU, 20 objects). Sevenobjects have LX>100, all RS except one XY, viz., BO Mic. Onlyfive (22%) RS objects have LX<25, while only three (10%)XY stars have LX>25. Formally, the limit of LX=25could serve as a statistical criterion to differentiate RS and XY stars.However, the other short-period binaries (including eclipsing stars ofAlgol and β Lyr type) have a distribution of LX verysimilar to the XY objects. The contact binaries (WU) appear to be muchweaker in X-rays than their detached counterparts of RS type, but thesample of the former is too small (three objects) to reach a firmconclusion. Sources matched with giants (either single or in binaries)are found to be significantly harder, with only 7% of hardness ratiosbelow 0, than subgiants (66% of HR1<0) and dwarfs (59% of HR1<0).Almost all objects in the sample are binary or multiple stars; thefraction of components (FC), defined as the total number of componentsin all binary and multiple systems divided by the sum of the totalnumber of components and single stars, is at least 0.90. The FC for theXY objects reaches 0.81, and for the unknown type 0.89. About 70% of RSobjects have also visual or astrometric companions, which makes themhierarchical multiple systems. The RS objects (mostly old, evolvedstars) and the XY stars have quite different kinematics. While the RSobjects move at considerable velocities in apparently random directionswith respect to the local standard of rest, the young stars have smallerand orderly velocities and tend to comprise expanding mini-associationssuch as the β Pic and the Tucana groups. The majority of the youngX-ray active stars belong to the Pleiades stream with the meanheliocentric velocity (U,V,W)=(-9.6,-21.8,-7.7) km s-1.

Nearby young stars
We present the results of an extensive all-sky survey of nearby stars ofspectral type F8 or later in a systematic search of young (zero-age mainsequence) objects. Our sample has been derived by cross-correlating theROSAT All-Sky Survey and the TYCHO catalogue, yielding a total of 754candidates distributed more or less randomly over the sky. Follow-upspectroscopy of these candidate objects has been performed on 748 ofthem. We have discovered a tight kinematic group of ten stars withextremely high lithium equivalent widths that are presumably youngerthan the Pleiades, but again distributed rather uniformly over the sky.Furthermore, about 43 per cent of our candidates have detectable levelsof lithium, thus indicating that these are relatively young objects withages not significantly above the Pleiades age.Based on observations collected at the European Southern Observatory,Chile (ESO No. 62.I-0650, 66.D-0159(A), 67.D-0236(A)).

A Radio and Optical Study of the Active Young F Star HR1817 (=HD35850)
This paper presents the results of a multiwavelength observational studyof the active young F-type star HR1817. The star was monitored at 4.80and 8.64GHz over 2×12h allocations with the Australia TelescopeCompact Array on 8 and 9 December, 2000. The Anglo-Australian Telescopewas used for simultaneous optical spectropolarimetry during a 2h periodon 9 December. The low levels of observed radio emission havecharacteristics that are similar to those seen in other active stars,and a gyrosynchrotron mechanism is proposed to explain them; this issupported by the relatively low fractions of circular polarisationmeasured in HR1817. Comparison of the emissions from 4.80 and 8.64GHzshows a very strong cross-correlation peak, indicative of a commonorigin, although the shift of this peak indicates that 8.64GHzvariations tend to precede those at 4.80GHz by, typically, ~20min. Theoptical spectropolarimetry reveals polarisation signals characteristicof surface magnetic fields, with profile changes indicating a complexdynamo-type magnetic topology is present on the star. This result makesHR1817 the star with the earliest spectral type on which dynamo magneticfields have been detected directly up to now.

Starspots as tracers of differential surface rotation
Differential rotation is a key ingredient in theories of stellarmagnetic field generation. The solar surface differential rotation wasinitially discovered via the simple method of tracking the rotationrates of individual starspots at different latitudes. Today, the sametechnique can be applied to rapidly rotating stars, using sequences ofDoppler images spanning several stellar rotations. Early results suggestthat solar-like differential rotation patterns prevail on rapidlyrotating dwarf stars, but much remains to be done in tracing global flowpatterns on pre-main sequence stars, giants, and tidally-locked binarycomponents. I outline the relative merits of the three main methods thathave so far been used to track the latitude dependence of starspotrotation rates, and discuss the validity of the physical assumptionsthat underpin them.

The ASCA Medium Sensitivity Survey (the GIS Catalog Project): Source Catalog
We present the first X-ray source catalog of the ASCA Medium SensitivitySurvey (AMSS, or the GIS catalog project), constructed from data atGalactic latitudes b>10deg observed between 1993 May and 1996December. The catalog utilizes 368 combined fields and contains 1343sources with the detection significance above 5 σ either in thesurvey bands of 0.7-7 keV, 2-10 keV, or 0.7-2 keV, including targetsources. For each source, the ASCA source name, position, a 90% errorradius, count rates in the three bands, detection significances, fluxes,and a hardness ratio are provided. With extensive simulations, wecarefully evaluate the data quality of the catalog. Results fromcross-correlation with other existing catalogs are briefly summarized.

The β Pictoris Moving Group
Following the 1983 IRAS detection and subsequent imaging of itsextensive dusty circumstellar disk, β Pictoris became theprototypical and most studied example of a potential forming planetarysystem. Here we report the identification of 17 star systems, each withone or more characteristics indicative of extreme youth, that are movingthrough space together with β Pic. This diverse set of ~12 millionyr old star systems, which includes a ~35 Jupiter mass brown dwarf, anda wide assortment of dusty circumstellar disks, is the comoving,youthful group closest to Earth. Their unique combination of youth andproximity to Earth makes group members-many of which have masses similarto that of the Sun-prime candidates for imaging of warm planets anddusty circumstellar disks with ground- and space-based telescopes.

The Coronal Metallicity of the Intermediate Activity Dwarf ξ Bootis A
Extreme Ultraviolet Explorer (EUVE) spectra from a 270 ks observation ofthe intermediate activity star ξ Boo A (G8 V) have been analyzed inorder to determine the metallicity of its coronal plasma. This analysiswas based on a new method that used both the EUVE spectroscopic andphotometric (Deep Survey) data, together with theoretical model spectra.By comparison of observed and synthetic spectra computed using theCHIANTI database, we estimated that about 20% of the observed line fluxis not accounted for in the theoretical model. Allowing for the``missing lines'' in our analysis, we obtain a coronal metallicity forξ Boo A of [M/H]=0.1+0.2-0.15 relative to thesolar photosphere. This is slightly higher than the photosphericmetallicity of [M/H]=-0.15+/-0.05 and lends support to the results ofour earlier analysis of the same spectral data that indicated thatcoronal abundances of elements with low first ionization potentials(FIPs) are systematically higher than those of elements with high FIPs.These results, coupled with other evidence, imply that stars ofintermediate activity level-stars more active than the Sun butsignificantly less active than the most active single and binarystars-do not suffer from any depletion of metals in their coronae assome coronal metallicities estimated for more active stars have appearedto suggest. The observation of a solar-like FIP effect on ξ Boo Aadds support to the notion that stars of intermediate activity levelhave coronae characterized by a high surface coverage of brightsolar-like active regions.

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Tavsan
Sað Açýklýk:05h27m04.80s
Yükselim:-11°54'03.0"
Görünürdeki Parlaklýk:6.35
Uzaklýk:26.838 parsek
özdevim Sað Açýklýk:17.5
özdevim Yükselim:-49.8
B-T magnitude:6.944
V-T magnitude:6.358

Kataloglar ve belirtme:
Özgün isimleri
HD 1989HD 35850
TYCHO-2 2000TYC 5340-1141-1
USNO-A2.0USNO-A2 0750-01381464
BSC 1991HR 1817
HIPHIP 25486

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin